import sys import time import re import json import pandas as pd import numpy as np from openai import OpenAI from pathlib import Path client = OpenAI() file_path = "data/train.jsonl" if sys.argv[1:2] == ["mini"]: batch_file_path = "exp/structured_request_mini.jsonl" batch_result = "exp/structured_response_mini.jsonl" batch_id = "exp/structured_batch_id_mini" model_name = "gpt-4o-mini-2024-07-18" reasoning = "reasoning" elif sys.argv[1:2] == ["o1"]: batch_file_path = "exp/structured_request_o.jsonl" batch_result = "exp/structured_response_o.jsonl" batch_id = "exp/structured_batch_id_o" model_name = "o1-2024-12-17" reasoning = "explanation" elif sys.argv[1:2] == ["o3-mini"]: model_name = "o3‐mini‐2025‐01‐31" #model_name = "o3‐mini" batch_file_path = f"exp/structured_request_{model_name}.jsonl" batch_result = f"exp/structured_response_{model_name}.jsonl" batch_id = f"exp/structured_batch_id_{model_name}" reasoning = "explanation" else: batch_file_path = "exp/structured_request.jsonl" batch_result = "exp/structured_response.jsonl" batch_id = "exp/structured_batch_id" model_name = "gpt-4o" reasoning = "reasoning" data = [] with open(file_path, 'r') as f: for line in f: data.append(json.loads(line)) df = pd.DataFrame(data) df['techniques'] = df['techniques'].apply(lambda x: x if isinstance(x, list) else []) all_labels = sorted({label for techniques in df['techniques'] for label in techniques}) all_labels_re = re.compile('|'.join(all_labels)) stage = 3 if Path(batch_result).exists() else (2 if Path(batch_id).exists() else 0) if stage < 1: with open(batch_file_path, 'w') as f: for i, row in df.iterrows(): user_prompt = f"The following text may use manipulative techniques. Your task is to identify the techniques used, if any, from this list: {', '.join(all_labels)}. Read the message and flag the presence of each technique.\nMessage:\n{row['content']}\n" request = { "custom_id": row["id"], "method": "POST", "url": "/v1/chat/completions", "body": { "model": model_name, "messages": [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": user_prompt}, ], "max_tokens": 1000, "response_format": { "type": "json_schema", "json_schema": { "name": "techniques", "strict": True, "schema": { "type": "object", "properties": { reasoning: {"type": "string"}, } | {label: {"type": "boolean"} for label in all_labels}, "required": [reasoning] + all_labels, "additionalProperties": False, }, }, }, }, } print(json.dumps(request, ensure_ascii=False), file=f) if stage < 2: batch_input_file = client.files.create( file=open(batch_file_path, "rb"), purpose="batch" ) batch = client.batches.create( input_file_id=batch_input_file.id, endpoint="/v1/chat/completions", completion_window="24h", metadata={ "description": batch_file_path } ) print(batch.id) Path(batch_id).write_text(batch.to_json()) if stage < 3: batch = json.loads(Path(batch_id).read_text()) batch = client.batches.retrieve(batch['id']) output_file_id = batch.output_file_id while not output_file_id: print(batch.to_json()) time.sleep(300) batch = client.batches.retrieve(batch.id) output_file_id = batch.output_file_id output_file = client.files.content(output_file_id) Path(batch_result).write_text(output_file.text) print(batch_result) if stage < 4: tp = {label: 0 for label in all_labels} tn = {label: 0 for label in all_labels} fp = {label: 0 for label in all_labels} fn = {label: 0 for label in all_labels} manip_fp = 0 manip_fn = 0 manip_tp = 0 manip_tn = 0 for source, request, response in zip(data, Path(batch_file_path).open(), Path(batch_result).open()): content = json.loads(response)['response']['body']['choices'][0]['message']['content'] content = json.loads(content) reference = {label: True for label in source['techniques'] or []} hypothesis = {label: content[label] for label in all_labels if content[label]} remaining_labels = list(all_labels) for label in reference: if label in hypothesis: tp[label] += 1 remaining_labels.remove(label) else: fn[label] += 1 remaining_labels.remove(label) for label in hypothesis: if label not in reference: fp[label] += 1 remaining_labels.remove(label) for label in remaining_labels: tn[label] += 1 # manipulative if any of these match if reference and hypothesis: manip_tp += 1 elif reference and not hypothesis: manip_fn += 1 elif not reference and hypothesis: manip_fp += 1 else: manip_tn += 1 f1 = [] for label in all_labels: precision = tp[label] / (tp[label] + fp[label]) recall = tp[label] / (tp[label] + fn[label]) accuracy = (tp[label] + tn[label]) / (tp[label] + tn[label] + fp[label] + fn[label]) print(f'{label=} {precision=:0.2f} {recall=:0.2f} {accuracy=:0.2f}') f1.append(2*precision*recall/(precision+recall)) f1 = np.mean(f1) print(f'macro {f1=:.2f} over {all_labels}') precision = manip_tp / (manip_tp + manip_fp) recall = manip_tp / (manip_tp + manip_fn) accuracy = (manip_tp + manip_tn) / (manip_tp + manip_tn + manip_fp + manip_fn) f1 = 2*precision*recall/(precision+recall) print(f'any {precision=:0.2f} {recall=:0.2f} {accuracy=:0.2f} {f1=:0.2f}')