import sys import time import re import json import pandas as pd import numpy as np from openai import OpenAI from pathlib import Path client = OpenAI() file_path = "data/train.jsonl" target_label = (sys.argv[2:3] or ["loaded_language"])[0] if target_label == "bandwagon": name_prefix = "" else: name_prefix = target_label + "_" if sys.argv[1:2] == ["mini"]: batch_file_path = f"exp/{name_prefix}expert_request_mini.jsonl" batch_result = f"exp/{name_prefix}expert_response_mini.jsonl" batch_id = f"exp/{name_prefix}expert_batch_id_mini" model_name = "gpt-4o-mini-2024-07-18" elif sys.argv[1:2] == ["o1"]: batch_file_path = f"exp/{name_prefix}expert_request_o.jsonl" batch_result = f"exp/{name_prefix}expert_response_o.jsonl" batch_id = f"exp/{name_prefix}expert_batch_id_o" model_name = "o1-2024-12-17" elif sys.argv[1:2] == ["o3-mini"]: #model_name = "o3‐mini‐2025‐01‐31" model_name = "o3‐mini" batch_file_path = f"exp/{name_prefix}expert_request_{model_name}.jsonl" batch_result = f"exp/{name_prefix}expert_response_{model_name}.jsonl" batch_id = f"exp/{name_prefix}expert_batch_id_{model_name}" else: batch_file_path = f"exp/{name_prefix}expert_request.jsonl" batch_result = f"exp/{name_prefix}expert_response.jsonl" batch_id = f"exp/{name_prefix}expert_batch_id" model_name = "gpt-4o" data = [] with open(file_path, 'r') as f: for line in f: data.append(json.loads(line)) df = pd.DataFrame(data) df['techniques'] = df['techniques'].apply(lambda x: x if isinstance(x, list) else []) all_labels = sorted({label for techniques in df['techniques'] for label in techniques}) all_labels_re = re.compile('|'.join(all_labels)) descriptions = { "appeal_to_fear": "Appeal to Fear: Uses fear to influence the audience, often exaggerating risks or consequences.", "bandwagon": "Bandwagon (Appeal to People): Encourages people to follow the crowd by suggesting everyone else is doing it.", "cherry_picking": "Cherry Picking: Selectively presents data or facts that support a viewpoint while ignoring contradictory evidence.", "cliche": "Thought-Terminating Cliché: Uses common phrases to shut down critical thinking and discussion.", "euphoria": "Euphoria: Creates a sense of triumph or happiness to boost morale and mobilize support.", "fud": "FUD (Fear, Uncertainty, Doubt): Sows fear, uncertainty, and doubt to manipulate perception and discourage opposition.", "glittering_generalities": "Glittering Generalities: Uses emotionally appealing but vague concepts like 'freedom' and 'justice' without specifics.", "loaded_language": "Loaded Language: Employs strongly emotional or charged words to sway opinion.", "straw_man": "Straw Man: Misrepresents an opponent’s argument to make it easier to attack.", "whataboutism": "Whataboutism: Deflects criticism by pointing out alleged hypocrisy instead of addressing the issue." } stage = 2 if Path(batch_id).exists() else 0 if stage < 1: with open(batch_file_path, 'w') as f: for i, row in df.iterrows(): request = { "custom_id": row["id"], "method": "POST", "url": "/v1/chat/completions", "body": { "model": model_name, "messages": [ {"role": "system", "content": f"You are an expert in the {target_label} manipulation technique. {descriptions[target_label]} List phrases that provide evidence of {target_label} in the given sentence if they are present. Given the evidence, make a judgement whether the sentence contains the {target_label} manipulation."}, {"role": "user", "content": row["content"]}, ], "max_tokens": 1000, "response_format": { "type": "json_schema", "json_schema": { "name": "techniques", "strict": True, "schema": { "type": "object", "properties": { "evidence_phrases": {"type": "string"}, target_label: {"type": "boolean"}, }, "required": ["evidence_phrases", target_label], "additionalProperties": False, }, }, }, }, } print(json.dumps(request, ensure_ascii=False), file=f) if stage < 2: batch_input_file = client.files.create( file=open(batch_file_path, "rb"), purpose="batch" ) batch = client.batches.create( input_file_id=batch_input_file.id, endpoint="/v1/chat/completions", completion_window="24h", metadata={ "description": batch_file_path } ) print(batch.id) Path(batch_id).write_text(batch.to_json()) if stage < 3: batch = json.loads(Path(batch_id).read_text()) batch = client.batches.retrieve(batch['id']) output_file_id = batch.output_file_id while not output_file_id: print(batch.to_json()) time.sleep(300) batch = client.batches.retrieve(batch.id) output_file_id = batch.output_file_id output_file = client.files.content(output_file_id) Path(batch_result).write_text(output_file.text) print(batch_result) if stage < 4: fp = 0 fn = 0 tp = 0 tn = 0 count = 0 for source, request, response in zip(data, Path(batch_file_path).open(), Path(batch_result).open()): content = json.loads(response)['response']['body']['choices'][0]['message']['content'] try: content = json.loads(content) except: print(content) continue source_evidence = [source['content'][s:e] for (s, e), t in zip(source.get('trigger_words', []) or [], source['techniques'] or []) if t == target_label] if source_evidence: print(content, source_evidence) continue reference = source['techniques'] and target_label in source['techniques'] hypothesis = content[target_label] # manipulative if any of these match if reference and hypothesis: tp += 1 elif reference and not hypothesis: fn += 1 elif not reference and hypothesis: fp += 1 else: tn += 1 count += 1 precision = tp / (tp + fp) recall = tp / (tp + fn) accuracy = (tp + tn) / (tp + tn + fp + fn) f1 = 2*precision*recall/(precision+recall) print(f'{target_label} {precision=:0.2f} {recall=:0.2f} {accuracy=:0.2f} {f1=:0.2f} {tp=} {tn=} {fp=} {fn=} {count=}')