import os import sys with open(sys.argv[0]) as f: code = f.read() # read the code of this file ASAP, for logging import uuid import time import glob import subprocess import contextlib from dataclasses import dataclass import torch torch.empty(1, device='cuda', requires_grad=True).backward() from torch import nn import torch.nn.functional as F import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP # use of FlexAttention contributed by @KoszarskyB from torch.nn.attention.flex_attention import BlockMask, flex_attention # ----------------------------------------------------------------------------- # Muon optimizer @torch.compile def zeropower_via_newtonschulz5(G, steps): """ Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at zero even beyond the point where the iteration no longer converges all the way to one everywhere on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model performance at all relative to UV^T, where USV^T = G is the SVD. """ assert len(G.shape) == 2 a, b, c = (3.4445, -4.7750, 2.0315) X = G.bfloat16() if G.size(0) > G.size(1): X = X.T # Ensure spectral norm is at most 1 X = X / (X.norm() + 1e-7) # Perform the NS iterations for _ in range(steps): A = X @ X.T B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng X = a * X + B @ X if G.size(0) > G.size(1): X = X.T return X class Muon(torch.optim.Optimizer): """ Muon - MomentUm Orthogonalized by Newton-schulz Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- processing step, in which each 2D parameter's update is replaced with the nearest orthogonal matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has the advantage that it can be stably run in bfloat16 on the GPU. Some warnings: - This optimizer assumes that all parameters passed in are 2D. - It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). - To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions. - We believe it is unlikely to work well for training with small batch size. - We believe it may not work well for finetuning pretrained models, but we haven't tested this. - We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M). Arguments: lr: The learning rate used by the internal SGD. momentum: The momentum used by the internal SGD. nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended) ns_steps: The number of Newton-Schulz iteration steps to use. """ def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, ns_steps=5): self.world_size = int(os.environ['WORLD_SIZE']) self.rank = int(os.environ['RANK']) defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, ns_steps=ns_steps) assert all(isinstance(p, torch.Tensor) for p in params) sizes = {p.numel() for p in params} param_groups = [dict(params=[p for p in params if p.numel() == size], update_buffer=[torch.empty(size, device='cuda', dtype=torch.bfloat16) for _ in range(self.world_size)]) for size in sizes] super().__init__(param_groups, defaults) def step(self): for group in self.param_groups: lr = group['lr'] momentum = group['momentum'] nesterov = group['nesterov'] ns_steps = group['ns_steps'] update_buffers = group['update_buffer'] # generate weight updates in distributed fashion params = group['params'] handle = None params_world = None def update_prev(): if params_world is None: return assert handle is not None handle.wait() for p_world, g_world in zip(params_world, update_buffers): p_world.data.add_( g_world.view_as(p_world), alpha=-lr * max(1, p_world.size(0) / p_world.size(1)) ** 0.5, ) for base_i in range(len(params))[::self.world_size]: if base_i + rank < len(params): p = params[base_i + self.rank] g = p.grad assert g is not None state = self.state[p] if 'momentum_buffer' not in state: state['momentum_buffer'] = torch.zeros_like(g) buf = state['momentum_buffer'] buf.lerp_(g, 1 - momentum) g = g.lerp_(buf, momentum) if nesterov else buf g = zeropower_via_newtonschulz5(g, steps=ns_steps).flatten() else: g = update_buffers[rank] update_prev() # async all_gather instead of sync all_reduce by @YouJiacheng handle = dist.all_gather(update_buffers, g, async_op=True) params_world = params[base_i : base_i + self.world_size] update_prev() # ----------------------------------------------------------------------------- # PyTorch nn.Module definitions for the GPT-2 model def norm(x): return F.rms_norm(x, (x.size(-1),)) class CastedLinear(nn.Linear): def __init__(self, in_features, out_features): super().__init__(in_features, out_features, bias=False) def forward(self, x): return F.linear(x, self.weight.type_as(x)) class Rotary(nn.Module): def __init__(self, dim, max_seq_len=65536): super().__init__() # half-truncate RoPE by @YouJiacheng angular_freq = (1 / 1024) ** torch.linspace(0, 1, steps=dim//4, dtype=torch.float32) angular_freq = torch.cat([angular_freq, angular_freq.new_zeros(dim//4)]) t = torch.arange(max_seq_len, dtype=torch.float32) theta = torch.einsum('i,j -> ij', t, angular_freq) self.cos = nn.Buffer(theta.cos(), persistent=False) self.sin = nn.Buffer(theta.sin(), persistent=False) def forward(self, x): cos, sin = self.cos[None, :x.size(-3), None, :], self.sin[None, :x.size(-3), None, :] x1, x2 = x.float().chunk(2, dim=-1) y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat((y1, y2), 3).type_as(x) class CausalSelfAttention(nn.Module): def __init__(self, dim, num_heads): super().__init__() assert dim % num_heads == 0 self.num_heads = num_heads self.c_q = CastedLinear(dim, dim) self.c_k = CastedLinear(dim, dim) self.c_v = CastedLinear(dim, dim) self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5])) self.rotary = Rotary(dim // num_heads) # dim // num_heads = head_dim self.c_proj = CastedLinear(dim, dim) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x, ve, block_mask): B, T = x.size(0), x.size(1) # batch size, sequence length assert B == 1, 'Must use batch size = 1 for FlexAttention' q = self.c_q(x).view(B, T, self.num_heads, -1) k = self.c_k(x).view(B, T, self.num_heads, -1) v = self.c_v(x).view(B, T, self.num_heads, -1) if ve is not None: v = self.lambdas[0] * v + self.lambdas[1] * ve.view_as(v) # @KoszarskyB & @Grad62304977 else: # skip mid-layers token value embeddings by @YouJiacheng v = self.lambdas[0] * v q, k = norm(q), norm(k) # QK norm @Grad62304977 q, k = self.rotary(q), self.rotary(k) y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask) y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, dim): super().__init__() self.c_fc = CastedLinear(dim, 4 * dim) self.c_proj = CastedLinear(4 * dim, dim) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, model_dim, num_heads, use_attn=True): super().__init__() self.attn = CausalSelfAttention(model_dim, num_heads) if use_attn else None self.mlp = MLP(model_dim) self.lambdas = nn.Parameter(torch.tensor([1., 0.])) def forward(self, x, ve, x0, block_mask): x = self.lambdas[0] * x + self.lambdas[1] * x0 if self.attn is not None: x = x + self.attn(norm(x), ve, block_mask) x = x + self.mlp(norm(x)) return x class ValueEmbedding(nn.Module): def __init__(self, vocab_size, model_dim): super().__init__() self.embed = nn.ModuleList([nn.Embedding(vocab_size, model_dim) for _ in range(3)]) def forward(self, inputs): ve = [emb(inputs).bfloat16() for emb in self.embed] # 012 ... 012 structure on token value embeddings by @YouJiacheng, improved on @leloykun's U-net structure ve = [ve[0], ve[1], ve[2], None, None, None, None, None, None, ve[0], ve[1], ve[2]] return ve # ----------------------------------------------------------------------------- # The main GPT-2 model class GPT(nn.Module): def __init__(self, vocab_size, num_layers, num_heads, model_dim): super().__init__() self.embed = nn.Embedding(vocab_size, model_dim) # skip attention of blocks.7 (the 8th layer) by @YouJiacheng self.blocks = nn.ModuleList([Block(model_dim, num_heads, use_attn=(i != 7)) for i in range(num_layers)]) # token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning # U-net structure on token value embeddings by @leloykun self.value_embeds = ValueEmbedding(vocab_size, model_dim) self.lm_head = CastedLinear(model_dim, vocab_size) self.lm_head.weight.data.zero_() # @Grad62304977 # U-net design by @brendanh0gan self.num_encoder_layers = num_layers // 2 # Half of the layers for encoder self.num_decoder_layers = num_layers - self.num_encoder_layers # Remaining for decoder # Add learnable skip connection weights for decoder layers self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers)) def forward(self, inputs, targets, sliding_window_num_blocks): BLOCK_SIZE = 128 seq_len = len(inputs) assert seq_len % BLOCK_SIZE == 0 total_num_blocks = seq_len // BLOCK_SIZE assert inputs.ndim == 1 docs = (inputs == 50256).cumsum(0) docs_low = docs.view(-1, BLOCK_SIZE)[:, 0].contiguous() docs_high = docs.view(-1, BLOCK_SIZE)[:, -1].contiguous() def document_causal(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx document_mask = docs[q_idx] == docs[kv_idx] return causal_mask & document_mask def dense_to_ordered(dense_mask): num_blocks = dense_mask.sum(dim=-1, dtype=torch.int32) indices = dense_mask.argsort(dim=-1, descending=True, stable=True).to(torch.int32) return num_blocks[None, None].contiguous(), indices[None, None].contiguous() def create_doc_swc_block_mask(sliding_window_num_blocks): kv_idx = block_idx = torch.arange(total_num_blocks, dtype=torch.int32, device='cuda') q_idx = block_idx[:, None] causal_bm = q_idx >= kv_idx causal_full_bm = q_idx > kv_idx window_bm = q_idx - kv_idx < sliding_window_num_blocks window_full_bm = window_bm # block-wise sliding window by @YouJiacheng # document_bm = (docs_low[q_idx] <= docs_high[kv_idx]) & (docs_low[kv_idx] <= docs_high[q_idx]) document_bm = (docs_low[:, None] <= docs_high) & (docs_low <= docs_high[:, None]) document_full_bm = (docs_low[:, None] == docs_high) & (docs_low == docs_high[:, None]) nonzero_bm = causal_bm & window_bm & document_bm full_bm = causal_full_bm & window_full_bm & document_full_bm kv_num_blocks, kv_indices = dense_to_ordered(nonzero_bm & ~full_bm) full_kv_num_blocks, full_kv_indices = dense_to_ordered(full_bm) return BlockMask.from_kv_blocks( kv_num_blocks, kv_indices, full_kv_num_blocks, full_kv_indices, BLOCK_SIZE=BLOCK_SIZE, mask_mod=document_causal, ) block_mask = create_doc_swc_block_mask(sliding_window_num_blocks) x0 = norm(self.embed(inputs[None]).bfloat16()) # use of norm here by @Grad62304977 x = x0 ve = self.value_embeds(inputs) assert len(ve) == len(self.blocks) ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:] # Store outputs for U-Net skip connections skip_connections = [] # Encoder pass - process only the first half of the blocks for i in range(self.num_encoder_layers): x = self.blocks[i](x, ve_enc[i], x0, block_mask) skip_connections.append(x) # Decoder pass - process the remaining blocks with weighted skip connections for i in range(self.num_decoder_layers): x = x + self.skip_weights[i] * skip_connections.pop() # U-net structure on token value embeddings by @leloykun x = self.blocks[self.num_encoder_layers + i](x, ve_dec[i], x0, block_mask) x = norm(x) logits = self.lm_head(x) logits = 15 * torch.tanh(logits / 15) # @Grad62304977 added tanh softcapping, @KoszarskyB reduced it from 30 to 15 logits = logits.float() loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets) return loss # ----------------------------------------------------------------------------- # Our own simple Distributed Data Loader def _load_data_shard(path): # only reads the header, returns header data # header is 256 int32 header = torch.from_file(path, False, 256, dtype=torch.int32) assert header[0] == 20240520, 'magic number mismatch in the data .bin file' assert header[1] == 1, 'unsupported version' num_tokens = int(header[2]) # number of tokens (claimed) with open(path, 'rb', buffering=0) as f: tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True) # avoid pin_memory copy by @YouJiacheng f.seek(256 * 4) nbytes = f.readinto(tokens.numpy()) # avoid bytes->array copy by @YouJiacheng assert nbytes == 2 * num_tokens, 'number of tokens read does not match header' return tokens class DistributedDataLoader: def __init__(self, filename_pattern): self.rank = int(os.environ['RANK']) self.world_size = int(os.environ['WORLD_SIZE']) self.files = sorted(glob.glob(filename_pattern)) self.reset() def reset(self): self.current_shard = -1 self.advance() def advance(self): self.current_shard = (self.current_shard + 1) % len(self.files) self.current_position = 0 self.tokens = _load_data_shard(self.files[self.current_shard]) def next_batch(self, batch_size): assert batch_size % self.world_size == 0 device_batch_size = batch_size // self.world_size # load next shard if necessary if self.current_position + batch_size + 1 >= len(self.tokens): self.advance() pos = self.current_position + self.rank * device_batch_size device_batch_tokens = self.tokens[pos:pos+device_batch_size+1] # advance current position self.current_position += batch_size inputs = device_batch_tokens[:-1].to(device='cuda', dtype=torch.int32, non_blocking=True) targets = device_batch_tokens[1:].to(device='cuda', dtype=torch.int64, non_blocking=True) return inputs, targets # ----------------------------------------------------------------------------- # int main @dataclass class Hyperparameters: # data train_bin = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on val_bin = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on # optimization batch_size = 8*64*1024 # batch size in tokens max_device_batch_size = 64*1024 # batch size per device in tokens num_iterations = 1390 # number of iterations to run cooldown_frac = 0.4 # fraction of training spent cooling down the learning rate bf16_embeds = True # evaluation and logging val_loss_every = 125 # every how many steps to evaluate val loss? 0 for only at the end val_tokens = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons # implementation save_checkpoint = False args = Hyperparameters() micro_bs = args.max_device_batch_size # set up DDP (distributed data parallel). torchrun sets this env variable rank = int(os.environ['RANK']) local_rank = int(os.environ['LOCAL_RANK']) world_size = int(os.environ['WORLD_SIZE']) assert torch.cuda.is_available() torch.cuda.set_device(local_rank) dist.init_process_group(backend='nccl', device_id=torch.device(local_rank)) dist.barrier() master_process = (rank == 0) # this process will do logging, checkpointing etc. # begin logging logfile = None if master_process: run_id = uuid.uuid4() os.makedirs('logs', exist_ok=True) logfile = f'logs/{run_id}.txt' print(logfile) def print0(s, console=False): if master_process: with open(logfile, 'a') as f: if console: print(s) print(s, file=f) # begin by printing this file (the Python code) print0(code) print0('='*100) # log information about the hardware/software environment this is running on print0(f'Running Python {sys.version}') print0(f'Running PyTorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}') print0(subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True).stdout) print0('='*100) # load data train_loader = DistributedDataLoader(args.train_bin) val_loader = DistributedDataLoader(args.val_bin) print0(f'Training dataloader files: {train_loader.files}') print0(f'Validation dataloader files: {val_loader.files}') print0('='*100) # there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977. # this originates from Karpathy's experiments. model = GPT(vocab_size=50304, num_layers=12, num_heads=6, model_dim=768) model = model.cuda() if args.bf16_embeds: for m in model.modules(): if isinstance(m, nn.Embedding): m.bfloat16() model = torch.compile(model) ddp_model = DDP(model, device_ids=[local_rank], broadcast_buffers=False, gradient_as_bucket_view=True) # collect the parameters to optimize hidden_matrix_params = [p for p in model.blocks.parameters() if p.ndim == 2] embed_params = [model.embed.weight, *model.value_embeds.parameters()] scalar_params = [p for p in model.parameters() if p.ndim < 2] head_params = [model.lm_head.weight] # init the optimizer(s) optimizer1 = torch.optim.Adam([dict(params=embed_params, lr=0.6), dict(params=head_params, lr=0.008), dict(params=scalar_params, lr=0.04)], betas=(0.8, 0.95), fused=True) optimizer2 = Muon(hidden_matrix_params, lr=0.05, momentum=0.95) optimizers = [optimizer1, optimizer2] # learning rate schedule: stable then decay def get_lr(it): t = 1 - it / args.num_iterations # time remaining in training assert 1 >= t > 0 # 1) constant lr for first part of training if t >= args.cooldown_frac: return 1.0 # 2) then linear cooldown else: return t / args.cooldown_frac schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers] # sliding window size schedule: linear increase over training in chunks of 128 from 128 -> 1792. By @fernbear.bsky.social def get_sliding_window_blocks(it): x = it / args.num_iterations # training progress assert 0 <= x <= 1 return int(((1 - x) * 128 + x * 1856) // 128) sliding_window_num_blocks = torch.tensor(1, dtype=torch.int32, device='cuda') # Start training loop training_time_ms = 0 # start the clock torch.cuda.synchronize() t0 = time.perf_counter() # begin training train_steps = args.num_iterations for step in range(train_steps + 1): last_step = (step == train_steps) # This effectively ignores timing first 10 steps, which are slower for weird reasons. # Alternately, and slightly more correctly in terms of benchmarking, we could do 10 # steps with dummy data first, and then re-initialize the model and reset the loader. if step == 10: training_time_ms = 0 t0 = time.perf_counter() timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val sliding_window_num_blocks.copy_(get_sliding_window_blocks(step)) # --------------- VALIDATION SECTION ----------------- if last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.perf_counter() - t0) # run validation batches model.eval() val_loader.reset() val_loss = 0.0 # calculate the number of steps to take in the val loop. val_batch_size = world_size * micro_bs assert args.val_tokens % val_batch_size == 0 val_steps = args.val_tokens // val_batch_size for _ in range(val_steps): with torch.no_grad(): inputs_val, targets_val = val_loader.next_batch(val_batch_size) val_loss += ddp_model(inputs_val, targets_val, sliding_window_num_blocks) dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) val_loss /= val_steps # logging print0(f'step:{step}/{train_steps} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms', console=True) # start the clock again torch.cuda.synchronize() t0 = time.perf_counter() if last_step: if master_process and args.save_checkpoint: log = dict(step=step, code=code, model=model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) os.makedirs(f'logs/{run_id}', exist_ok=True) torch.save(log, f'logs/{run_id}/state_step{step:06d}.pt') # the last step only has the validation loop, so break to avoid training break # --------------- TRAINING SECTION ----------------- model.train() batch_size = args.batch_size assert batch_size % world_size == 0 inputs_train, targets_train = train_loader.next_batch(batch_size) assert len(inputs_train) <= micro_bs or len(inputs_train) % micro_bs == 0 for micro_inputs_train, micro_targets_train in zip(inputs_train.split(micro_bs), targets_train.split(micro_bs)): ddp_model(micro_inputs_train, micro_targets_train, sliding_window_num_blocks).backward() # momentum warmup for Muon frac = min(step/300, 1) for group in optimizer2.param_groups: group['momentum'] = (1 - frac) * 0.85 + frac * 0.95 # step the optimizers and schedulers for opt, sched in zip(optimizers, schedulers): opt.step() if step != train_steps-1: sched.step() # null the gradients model.zero_grad(set_to_none=True) # logging approx_time = training_time_ms + 1000 * (time.perf_counter() - t0) print0(f'step:{step+1}/{train_steps} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms', console=True) print0(f'peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB') dist.destroy_process_group() ==================================================================================================== Running Python 3.12.7 (main, Jan 4 2025, 08:08:20) [GCC 13.2.0] Running PyTorch 2.6.0.dev20241231+cu126 compiled for CUDA 12.6 Sat Jan 4 08:29:45 2025 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.127.05 Driver Version: 550.127.05 CUDA Version: 12.6 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA H100 80GB HBM3 On | 00000000:61:00.0 Off | 0 | | N/A 28C P0 124W / 700W | 7746MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 1 NVIDIA H100 80GB HBM3 On | 00000000:62:00.0 Off | 0 | | N/A 32C P0 121W / 700W | 3456MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 2 NVIDIA H100 80GB HBM3 On | 00000000:63:00.0 Off | 0 | | N/A 33C P0 126W / 700W | 3456MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 3 NVIDIA H100 80GB HBM3 On | 00000000:64:00.0 Off | 0 | | N/A 27C P0 118W / 700W | 3456MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 4 NVIDIA H100 80GB HBM3 On | 00000000:6A:00.0 Off | 0 | | N/A 28C P0 115W / 700W | 3456MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 5 NVIDIA H100 80GB HBM3 On | 00000000:6B:00.0 Off | 0 | | N/A 32C P0 116W / 700W | 3456MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 6 NVIDIA H100 80GB HBM3 On | 00000000:6C:00.0 Off | 0 | | N/A 32C P0 119W / 700W | 3456MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 7 NVIDIA H100 80GB HBM3 On | 00000000:6D:00.0 Off | 0 | | N/A 28C P0 118W / 700W | 3216MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| +-----------------------------------------------------------------------------------------+ ==================================================================================================== Training dataloader files: ['data/fineweb10B/fineweb_train_000001.bin', 'data/fineweb10B/fineweb_train_000002.bin', 'data/fineweb10B/fineweb_train_000003.bin', 'data/fineweb10B/fineweb_train_000004.bin', 'data/fineweb10B/fineweb_train_000005.bin', 'data/fineweb10B/fineweb_train_000006.bin', 'data/fineweb10B/fineweb_train_000007.bin', 'data/fineweb10B/fineweb_train_000008.bin', 'data/fineweb10B/fineweb_train_000009.bin'] Validation dataloader files: ['data/fineweb10B/fineweb_val_000000.bin'] ==================================================================================================== step:0/1390 val_loss:10.8258 train_time:0ms step_avg:nanms step:1/1390 train_time:243813ms step_avg:nanms step:2/1390 train_time:244359ms step_avg:nanms step:3/1390 train_time:245864ms step_avg:nanms step:4/1390 train_time:245997ms step_avg:nanms step:5/1390 train_time:246131ms step_avg:nanms step:6/1390 train_time:246264ms step_avg:nanms step:7/1390 train_time:246396ms step_avg:nanms step:8/1390 train_time:246529ms step_avg:nanms step:9/1390 train_time:246662ms step_avg:nanms step:10/1390 train_time:246800ms step_avg:nanms step:11/1390 train_time:135ms step_avg:nanms step:12/1390 train_time:272ms step_avg:nanms step:13/1390 train_time:406ms step_avg:135.28ms step:14/1390 train_time:540ms step_avg:134.94ms step:15/1390 train_time:673ms step_avg:134.61ms step:16/1390 train_time:808ms step_avg:134.61ms step:17/1390 train_time:942ms step_avg:134.60ms step:18/1390 train_time:1078ms step_avg:134.70ms step:19/1390 train_time:1212ms step_avg:134.64ms step:20/1390 train_time:1347ms step_avg:134.74ms step:21/1390 train_time:1481ms step_avg:134.64ms step:22/1390 train_time:1616ms step_avg:134.64ms step:23/1390 train_time:1751ms step_avg:134.66ms step:24/1390 train_time:1884ms step_avg:134.59ms step:25/1390 train_time:2019ms step_avg:134.59ms step:26/1390 train_time:2153ms step_avg:134.59ms step:27/1390 train_time:2288ms step_avg:134.60ms step:28/1390 train_time:2423ms step_avg:134.62ms step:29/1390 train_time:2557ms step_avg:134.60ms step:30/1390 train_time:2691ms step_avg:134.57ms step:31/1390 train_time:2826ms step_avg:134.58ms step:32/1390 train_time:2959ms step_avg:134.51ms step:33/1390 train_time:3094ms step_avg:134.53ms step:34/1390 train_time:3230ms step_avg:134.58ms step:35/1390 train_time:3363ms step_avg:134.53ms step:36/1390 train_time:3497ms step_avg:134.52ms step:37/1390 train_time:3632ms step_avg:134.50ms step:38/1390 train_time:3765ms step_avg:134.46ms step:39/1390 train_time:3899ms step_avg:134.46ms step:40/1390 train_time:4034ms step_avg:134.47ms step:41/1390 train_time:4170ms step_avg:134.52ms step:42/1390 train_time:4305ms step_avg:134.54ms step:43/1390 train_time:4442ms step_avg:134.60ms step:44/1390 train_time:4577ms step_avg:134.62ms step:45/1390 train_time:4711ms step_avg:134.60ms step:46/1390 train_time:4847ms step_avg:134.63ms step:47/1390 train_time:4982ms step_avg:134.65ms step:48/1390 train_time:5117ms step_avg:134.66ms step:49/1390 train_time:5252ms step_avg:134.66ms step:50/1390 train_time:5387ms step_avg:134.68ms step:51/1390 train_time:5521ms step_avg:134.67ms step:52/1390 train_time:5655ms step_avg:134.64ms step:53/1390 train_time:5789ms step_avg:134.63ms step:54/1390 train_time:5925ms step_avg:134.67ms step:55/1390 train_time:6059ms step_avg:134.65ms step:56/1390 train_time:6194ms step_avg:134.66ms step:57/1390 train_time:6330ms step_avg:134.68ms step:58/1390 train_time:6465ms step_avg:134.68ms step:59/1390 train_time:6600ms step_avg:134.70ms step:60/1390 train_time:6734ms step_avg:134.68ms step:61/1390 train_time:6870ms step_avg:134.71ms step:62/1390 train_time:7004ms step_avg:134.70ms step:63/1390 train_time:7140ms step_avg:134.72ms step:64/1390 train_time:7275ms step_avg:134.73ms step:65/1390 train_time:7412ms step_avg:134.76ms step:66/1390 train_time:7544ms step_avg:134.72ms step:67/1390 train_time:7679ms step_avg:134.71ms step:68/1390 train_time:7814ms step_avg:134.73ms step:69/1390 train_time:7951ms step_avg:134.77ms step:70/1390 train_time:8086ms step_avg:134.76ms step:71/1390 train_time:8221ms step_avg:134.77ms step:72/1390 train_time:8356ms step_avg:134.77ms step:73/1390 train_time:8491ms step_avg:134.77ms step:74/1390 train_time:8624ms step_avg:134.75ms step:75/1390 train_time:8758ms step_avg:134.73ms step:76/1390 train_time:8893ms step_avg:134.74ms step:77/1390 train_time:9031ms step_avg:134.79ms step:78/1390 train_time:9166ms step_avg:134.80ms step:79/1390 train_time:9301ms step_avg:134.80ms step:80/1390 train_time:9436ms step_avg:134.79ms step:81/1390 train_time:9572ms step_avg:134.81ms step:82/1390 train_time:9707ms step_avg:134.82ms step:83/1390 train_time:9842ms step_avg:134.82ms step:84/1390 train_time:9977ms step_avg:134.82ms step:85/1390 train_time:10113ms step_avg:134.84ms step:86/1390 train_time:10250ms step_avg:134.86ms step:87/1390 train_time:10384ms step_avg:134.86ms step:88/1390 train_time:10519ms step_avg:134.86ms step:89/1390 train_time:10654ms step_avg:134.86ms step:90/1390 train_time:10789ms step_avg:134.87ms step:91/1390 train_time:10925ms step_avg:134.87ms step:92/1390 train_time:11058ms step_avg:134.86ms step:93/1390 train_time:11194ms step_avg:134.87ms step:94/1390 train_time:11330ms step_avg:134.88ms step:95/1390 train_time:11464ms step_avg:134.87ms step:96/1390 train_time:11598ms step_avg:134.86ms step:97/1390 train_time:11734ms step_avg:134.87ms step:98/1390 train_time:11869ms step_avg:134.88ms step:99/1390 train_time:12003ms step_avg:134.87ms step:100/1390 train_time:12138ms step_avg:134.87ms step:101/1390 train_time:12273ms step_avg:134.87ms step:102/1390 train_time:12408ms step_avg:134.87ms step:103/1390 train_time:12542ms step_avg:134.86ms step:104/1390 train_time:12677ms step_avg:134.86ms step:105/1390 train_time:12815ms step_avg:134.89ms step:106/1390 train_time:12954ms step_avg:134.93ms step:107/1390 train_time:13091ms step_avg:134.96ms step:108/1390 train_time:13229ms step_avg:134.99ms step:109/1390 train_time:13364ms step_avg:134.99ms step:110/1390 train_time:13502ms step_avg:135.02ms step:111/1390 train_time:13638ms step_avg:135.03ms step:112/1390 train_time:13776ms step_avg:135.05ms step:113/1390 train_time:13913ms step_avg:135.08ms step:114/1390 train_time:14053ms step_avg:135.13ms step:115/1390 train_time:14191ms step_avg:135.16ms step:116/1390 train_time:14329ms step_avg:135.18ms step:117/1390 train_time:14465ms step_avg:135.18ms step:118/1390 train_time:14601ms step_avg:135.19ms step:119/1390 train_time:14737ms step_avg:135.21ms step:120/1390 train_time:14877ms step_avg:135.24ms step:121/1390 train_time:15016ms step_avg:135.28ms step:122/1390 train_time:15155ms step_avg:135.31ms step:123/1390 train_time:15294ms step_avg:135.34ms step:124/1390 train_time:15431ms step_avg:135.36ms step:125/1390 train_time:15568ms step_avg:135.37ms step:125/1390 val_loss:4.3686 train_time:15634ms step_avg:135.95ms step:126/1390 train_time:15707ms step_avg:135.41ms step:127/1390 train_time:15848ms step_avg:135.45ms step:128/1390 train_time:15988ms step_avg:135.49ms step:129/1390 train_time:16125ms step_avg:135.50ms step:130/1390 train_time:16263ms step_avg:135.52ms step:131/1390 train_time:16401ms step_avg:135.54ms step:132/1390 train_time:16537ms step_avg:135.55ms step:133/1390 train_time:16675ms step_avg:135.57ms step:134/1390 train_time:16811ms step_avg:135.58ms step:135/1390 train_time:16949ms step_avg:135.59ms step:136/1390 train_time:17088ms step_avg:135.62ms step:137/1390 train_time:17226ms step_avg:135.64ms step:138/1390 train_time:17364ms step_avg:135.66ms step:139/1390 train_time:17502ms step_avg:135.68ms step:140/1390 train_time:17640ms step_avg:135.69ms step:141/1390 train_time:17777ms step_avg:135.70ms step:142/1390 train_time:17913ms step_avg:135.71ms step:143/1390 train_time:18050ms step_avg:135.71ms step:144/1390 train_time:18188ms step_avg:135.73ms step:145/1390 train_time:18326ms step_avg:135.75ms step:146/1390 train_time:18466ms step_avg:135.78ms step:147/1390 train_time:18605ms step_avg:135.80ms step:148/1390 train_time:18743ms step_avg:135.82ms step:149/1390 train_time:18880ms step_avg:135.83ms step:150/1390 train_time:19019ms step_avg:135.85ms step:151/1390 train_time:19155ms step_avg:135.85ms step:152/1390 train_time:19293ms step_avg:135.87ms step:153/1390 train_time:19431ms step_avg:135.88ms step:154/1390 train_time:19569ms step_avg:135.89ms step:155/1390 train_time:19707ms step_avg:135.91ms step:156/1390 train_time:19846ms step_avg:135.93ms step:157/1390 train_time:19984ms step_avg:135.95ms step:158/1390 train_time:20123ms step_avg:135.96ms step:159/1390 train_time:20261ms step_avg:135.98ms step:160/1390 train_time:20399ms step_avg:135.99ms step:161/1390 train_time:20535ms step_avg:136.00ms step:162/1390 train_time:20673ms step_avg:136.01ms step:163/1390 train_time:20810ms step_avg:136.02ms step:164/1390 train_time:20948ms step_avg:136.03ms step:165/1390 train_time:21088ms step_avg:136.05ms step:166/1390 train_time:21227ms step_avg:136.07ms step:167/1390 train_time:21365ms step_avg:136.08ms step:168/1390 train_time:21503ms step_avg:136.09ms step:169/1390 train_time:21642ms step_avg:136.11ms step:170/1390 train_time:21780ms step_avg:136.13ms step:171/1390 train_time:21919ms step_avg:136.14ms step:172/1390 train_time:22056ms step_avg:136.15ms step:173/1390 train_time:22196ms step_avg:136.17ms step:174/1390 train_time:22335ms step_avg:136.19ms step:175/1390 train_time:22473ms step_avg:136.20ms step:176/1390 train_time:22610ms step_avg:136.20ms step:177/1390 train_time:22747ms step_avg:136.21ms step:178/1390 train_time:22886ms step_avg:136.23ms step:179/1390 train_time:23025ms step_avg:136.24ms step:180/1390 train_time:23164ms step_avg:136.26ms step:181/1390 train_time:23303ms step_avg:136.28ms step:182/1390 train_time:23441ms step_avg:136.29ms step:183/1390 train_time:23579ms step_avg:136.30ms step:184/1390 train_time:23717ms step_avg:136.30ms step:185/1390 train_time:23855ms step_avg:136.31ms step:186/1390 train_time:23993ms step_avg:136.32ms step:187/1390 train_time:24131ms step_avg:136.33ms step:188/1390 train_time:24270ms step_avg:136.35ms step:189/1390 train_time:24409ms step_avg:136.36ms step:190/1390 train_time:24548ms step_avg:136.38ms step:191/1390 train_time:24732ms step_avg:136.64ms step:192/1390 train_time:24869ms step_avg:136.64ms step:193/1390 train_time:25006ms step_avg:136.65ms step:194/1390 train_time:25144ms step_avg:136.65ms step:195/1390 train_time:25281ms step_avg:136.65ms step:196/1390 train_time:25418ms step_avg:136.65ms step:197/1390 train_time:25555ms step_avg:136.66ms step:198/1390 train_time:25696ms step_avg:136.68ms step:199/1390 train_time:25836ms step_avg:136.70ms step:200/1390 train_time:25974ms step_avg:136.71ms step:201/1390 train_time:26111ms step_avg:136.71ms step:202/1390 train_time:26249ms step_avg:136.71ms step:203/1390 train_time:26386ms step_avg:136.71ms step:204/1390 train_time:26524ms step_avg:136.72ms step:205/1390 train_time:26664ms step_avg:136.74ms step:206/1390 train_time:26804ms step_avg:136.76ms step:207/1390 train_time:26943ms step_avg:136.77ms step:208/1390 train_time:27085ms step_avg:136.79ms step:209/1390 train_time:27226ms step_avg:136.81ms step:210/1390 train_time:27366ms step_avg:136.83ms step:211/1390 train_time:27507ms step_avg:136.85ms step:212/1390 train_time:27647ms step_avg:136.86ms step:213/1390 train_time:27788ms step_avg:136.89ms step:214/1390 train_time:27929ms step_avg:136.91ms step:215/1390 train_time:28070ms step_avg:136.93ms step:216/1390 train_time:28211ms step_avg:136.94ms step:217/1390 train_time:28350ms step_avg:136.96ms step:218/1390 train_time:28490ms step_avg:136.97ms step:219/1390 train_time:28630ms step_avg:136.99ms step:220/1390 train_time:28770ms step_avg:137.00ms step:221/1390 train_time:28913ms step_avg:137.03ms step:222/1390 train_time:29052ms step_avg:137.04ms step:223/1390 train_time:29194ms step_avg:137.06ms step:224/1390 train_time:29334ms step_avg:137.08ms step:225/1390 train_time:29475ms step_avg:137.09ms step:226/1390 train_time:29614ms step_avg:137.10ms step:227/1390 train_time:29754ms step_avg:137.12ms step:228/1390 train_time:29895ms step_avg:137.13ms step:229/1390 train_time:30036ms step_avg:137.15ms step:230/1390 train_time:30179ms step_avg:137.18ms step:231/1390 train_time:30321ms step_avg:137.20ms step:232/1390 train_time:30460ms step_avg:137.21ms step:233/1390 train_time:30600ms step_avg:137.22ms step:234/1390 train_time:30741ms step_avg:137.24ms step:235/1390 train_time:30881ms step_avg:137.25ms step:236/1390 train_time:31021ms step_avg:137.26ms step:237/1390 train_time:31164ms step_avg:137.29ms step:238/1390 train_time:31306ms step_avg:137.31ms step:239/1390 train_time:31447ms step_avg:137.32ms step:240/1390 train_time:31587ms step_avg:137.33ms step:241/1390 train_time:31727ms step_avg:137.35ms step:242/1390 train_time:31868ms step_avg:137.36ms step:243/1390 train_time:32008ms step_avg:137.37ms step:244/1390 train_time:32150ms step_avg:137.39ms step:245/1390 train_time:32292ms step_avg:137.41ms step:246/1390 train_time:32433ms step_avg:137.43ms step:247/1390 train_time:32573ms step_avg:137.44ms step:248/1390 train_time:32713ms step_avg:137.45ms step:249/1390 train_time:32854ms step_avg:137.47ms step:250/1390 train_time:32996ms step_avg:137.48ms step:250/1390 val_loss:3.9427 train_time:33065ms step_avg:137.77ms step:251/1390 train_time:33138ms step_avg:137.50ms step:252/1390 train_time:33283ms step_avg:137.53ms step:253/1390 train_time:33426ms step_avg:137.56ms step:254/1390 train_time:33567ms step_avg:137.57ms step:255/1390 train_time:33706ms step_avg:137.58ms step:256/1390 train_time:33846ms step_avg:137.59ms step:257/1390 train_time:33987ms step_avg:137.60ms step:258/1390 train_time:34129ms step_avg:137.62ms step:259/1390 train_time:34271ms step_avg:137.63ms step:260/1390 train_time:34413ms step_avg:137.65ms step:261/1390 train_time:34555ms step_avg:137.67ms step:262/1390 train_time:34695ms step_avg:137.68ms step:263/1390 train_time:34835ms step_avg:137.69ms step:264/1390 train_time:34975ms step_avg:137.70ms step:265/1390 train_time:35117ms step_avg:137.71ms step:266/1390 train_time:35258ms step_avg:137.73ms step:267/1390 train_time:35399ms step_avg:137.74ms step:268/1390 train_time:35539ms step_avg:137.75ms step:269/1390 train_time:35682ms step_avg:137.77ms step:270/1390 train_time:35823ms step_avg:137.78ms step:271/1390 train_time:35964ms step_avg:137.79ms step:272/1390 train_time:36104ms step_avg:137.80ms step:273/1390 train_time:36244ms step_avg:137.81ms step:274/1390 train_time:36384ms step_avg:137.82ms step:275/1390 train_time:36526ms step_avg:137.83ms step:276/1390 train_time:36666ms step_avg:137.84ms step:277/1390 train_time:36807ms step_avg:137.85ms step:278/1390 train_time:36947ms step_avg:137.86ms step:279/1390 train_time:37087ms step_avg:137.87ms step:280/1390 train_time:37227ms step_avg:137.88ms step:281/1390 train_time:37368ms step_avg:137.89ms step:282/1390 train_time:37510ms step_avg:137.90ms step:283/1390 train_time:37650ms step_avg:137.91ms step:284/1390 train_time:37792ms step_avg:137.93ms step:285/1390 train_time:37933ms step_avg:137.94ms step:286/1390 train_time:38074ms step_avg:137.95ms step:287/1390 train_time:38214ms step_avg:137.96ms step:288/1390 train_time:38356ms step_avg:137.97ms step:289/1390 train_time:38497ms step_avg:137.98ms step:290/1390 train_time:38638ms step_avg:137.99ms step:291/1390 train_time:38778ms step_avg:138.00ms step:292/1390 train_time:38919ms step_avg:138.01ms step:293/1390 train_time:39061ms step_avg:138.02ms step:294/1390 train_time:39202ms step_avg:138.04ms step:295/1390 train_time:39342ms step_avg:138.04ms step:296/1390 train_time:39482ms step_avg:138.05ms step:297/1390 train_time:39623ms step_avg:138.06ms step:298/1390 train_time:39763ms step_avg:138.06ms step:299/1390 train_time:39903ms step_avg:138.07ms step:300/1390 train_time:40044ms step_avg:138.08ms step:301/1390 train_time:40185ms step_avg:138.09ms step:302/1390 train_time:40328ms step_avg:138.11ms step:303/1390 train_time:40468ms step_avg:138.12ms step:304/1390 train_time:40610ms step_avg:138.13ms step:305/1390 train_time:40750ms step_avg:138.14ms step:306/1390 train_time:40891ms step_avg:138.15ms step:307/1390 train_time:41033ms step_avg:138.16ms step:308/1390 train_time:41173ms step_avg:138.16ms step:309/1390 train_time:41314ms step_avg:138.17ms step:310/1390 train_time:41456ms step_avg:138.19ms step:311/1390 train_time:41599ms step_avg:138.20ms step:312/1390 train_time:41741ms step_avg:138.22ms step:313/1390 train_time:41884ms step_avg:138.23ms step:314/1390 train_time:42025ms step_avg:138.24ms step:315/1390 train_time:42170ms step_avg:138.26ms step:316/1390 train_time:42313ms step_avg:138.28ms step:317/1390 train_time:42455ms step_avg:138.29ms step:318/1390 train_time:42597ms step_avg:138.30ms step:319/1390 train_time:42739ms step_avg:138.32ms step:320/1390 train_time:42882ms step_avg:138.33ms step:321/1390 train_time:43024ms step_avg:138.34ms step:322/1390 train_time:43169ms step_avg:138.36ms step:323/1390 train_time:43313ms step_avg:138.38ms step:324/1390 train_time:43455ms step_avg:138.39ms step:325/1390 train_time:43598ms step_avg:138.41ms step:326/1390 train_time:43740ms step_avg:138.42ms step:327/1390 train_time:43882ms step_avg:138.43ms step:328/1390 train_time:44026ms step_avg:138.45ms step:329/1390 train_time:44169ms step_avg:138.46ms step:330/1390 train_time:44313ms step_avg:138.48ms step:331/1390 train_time:44455ms step_avg:138.49ms step:332/1390 train_time:44598ms step_avg:138.50ms step:333/1390 train_time:44740ms step_avg:138.51ms step:334/1390 train_time:44883ms step_avg:138.53ms step:335/1390 train_time:45026ms step_avg:138.54ms step:336/1390 train_time:45170ms step_avg:138.56ms step:337/1390 train_time:45314ms step_avg:138.57ms step:338/1390 train_time:45457ms step_avg:138.59ms step:339/1390 train_time:45599ms step_avg:138.60ms step:340/1390 train_time:45741ms step_avg:138.61ms step:341/1390 train_time:45885ms step_avg:138.63ms step:342/1390 train_time:46027ms step_avg:138.64ms step:343/1390 train_time:46171ms step_avg:138.65ms step:344/1390 train_time:46316ms step_avg:138.67ms step:345/1390 train_time:46459ms step_avg:138.68ms step:346/1390 train_time:46601ms step_avg:138.69ms step:347/1390 train_time:46745ms step_avg:138.71ms step:348/1390 train_time:46887ms step_avg:138.72ms step:349/1390 train_time:47031ms step_avg:138.73ms step:350/1390 train_time:47174ms step_avg:138.75ms step:351/1390 train_time:47317ms step_avg:138.76ms step:352/1390 train_time:47459ms step_avg:138.77ms step:353/1390 train_time:47604ms step_avg:138.79ms step:354/1390 train_time:47746ms step_avg:138.80ms step:355/1390 train_time:47890ms step_avg:138.81ms step:356/1390 train_time:48034ms step_avg:138.83ms step:357/1390 train_time:48177ms step_avg:138.84ms step:358/1390 train_time:48320ms step_avg:138.85ms step:359/1390 train_time:48464ms step_avg:138.87ms step:360/1390 train_time:48608ms step_avg:138.88ms step:361/1390 train_time:48751ms step_avg:138.89ms step:362/1390 train_time:48894ms step_avg:138.90ms step:363/1390 train_time:49037ms step_avg:138.91ms step:364/1390 train_time:49180ms step_avg:138.93ms step:365/1390 train_time:49323ms step_avg:138.94ms step:366/1390 train_time:49465ms step_avg:138.95ms step:367/1390 train_time:49609ms step_avg:138.96ms step:368/1390 train_time:49751ms step_avg:138.97ms step:369/1390 train_time:49894ms step_avg:138.98ms step:370/1390 train_time:50035ms step_avg:138.99ms step:371/1390 train_time:50178ms step_avg:139.00ms step:372/1390 train_time:50320ms step_avg:139.01ms step:373/1390 train_time:50464ms step_avg:139.02ms step:374/1390 train_time:50609ms step_avg:139.03ms step:375/1390 train_time:50752ms step_avg:139.05ms step:375/1390 val_loss:3.7671 train_time:50822ms step_avg:139.24ms step:376/1390 train_time:50897ms step_avg:139.06ms step:377/1390 train_time:51044ms step_avg:139.08ms step:378/1390 train_time:51186ms step_avg:139.09ms step:379/1390 train_time:51329ms step_avg:139.10ms step:380/1390 train_time:51471ms step_avg:139.11ms step:381/1390 train_time:51665ms step_avg:139.26ms step:382/1390 train_time:51807ms step_avg:139.27ms step:383/1390 train_time:51950ms step_avg:139.28ms step:384/1390 train_time:52092ms step_avg:139.28ms step:385/1390 train_time:52234ms step_avg:139.29ms step:386/1390 train_time:52375ms step_avg:139.30ms step:387/1390 train_time:52518ms step_avg:139.31ms step:388/1390 train_time:52663ms step_avg:139.32ms step:389/1390 train_time:52807ms step_avg:139.33ms step:390/1390 train_time:52950ms step_avg:139.34ms step:391/1390 train_time:53091ms step_avg:139.35ms step:392/1390 train_time:53234ms step_avg:139.36ms step:393/1390 train_time:53378ms step_avg:139.37ms step:394/1390 train_time:53521ms step_avg:139.38ms step:395/1390 train_time:53665ms step_avg:139.39ms step:396/1390 train_time:53809ms step_avg:139.40ms step:397/1390 train_time:53952ms step_avg:139.41ms step:398/1390 train_time:54094ms step_avg:139.42ms step:399/1390 train_time:54239ms step_avg:139.43ms step:400/1390 train_time:54382ms step_avg:139.44ms step:401/1390 train_time:54525ms step_avg:139.45ms step:402/1390 train_time:54668ms step_avg:139.46ms step:403/1390 train_time:54811ms step_avg:139.47ms step:404/1390 train_time:54953ms step_avg:139.48ms step:405/1390 train_time:55097ms step_avg:139.49ms step:406/1390 train_time:55240ms step_avg:139.49ms step:407/1390 train_time:55382ms step_avg:139.50ms step:408/1390 train_time:55524ms step_avg:139.51ms step:409/1390 train_time:55666ms step_avg:139.51ms step:410/1390 train_time:55809ms step_avg:139.52ms step:411/1390 train_time:55952ms step_avg:139.53ms step:412/1390 train_time:56094ms step_avg:139.54ms step:413/1390 train_time:56239ms step_avg:139.55ms step:414/1390 train_time:56384ms step_avg:139.57ms step:415/1390 train_time:56529ms step_avg:139.58ms step:416/1390 train_time:56673ms step_avg:139.59ms step:417/1390 train_time:56817ms step_avg:139.60ms step:418/1390 train_time:56961ms step_avg:139.61ms step:419/1390 train_time:57106ms step_avg:139.62ms step:420/1390 train_time:57250ms step_avg:139.64ms step:421/1390 train_time:57394ms step_avg:139.65ms step:422/1390 train_time:57539ms step_avg:139.66ms step:423/1390 train_time:57684ms step_avg:139.67ms step:424/1390 train_time:57829ms step_avg:139.68ms step:425/1390 train_time:57974ms step_avg:139.70ms step:426/1390 train_time:58118ms step_avg:139.71ms step:427/1390 train_time:58261ms step_avg:139.72ms step:428/1390 train_time:58407ms step_avg:139.73ms step:429/1390 train_time:58552ms step_avg:139.74ms step:430/1390 train_time:58698ms step_avg:139.76ms step:431/1390 train_time:58844ms step_avg:139.77ms step:432/1390 train_time:58989ms step_avg:139.78ms step:433/1390 train_time:59134ms step_avg:139.80ms step:434/1390 train_time:59278ms step_avg:139.81ms step:435/1390 train_time:59425ms step_avg:139.82ms step:436/1390 train_time:59568ms step_avg:139.83ms step:437/1390 train_time:59713ms step_avg:139.84ms step:438/1390 train_time:59858ms step_avg:139.85ms step:439/1390 train_time:60003ms step_avg:139.87ms step:440/1390 train_time:60148ms step_avg:139.88ms step:441/1390 train_time:60293ms step_avg:139.89ms step:442/1390 train_time:60439ms step_avg:139.91ms step:443/1390 train_time:60585ms step_avg:139.92ms step:444/1390 train_time:60728ms step_avg:139.93ms step:445/1390 train_time:60872ms step_avg:139.93ms step:446/1390 train_time:61017ms step_avg:139.95ms step:447/1390 train_time:61163ms step_avg:139.96ms step:448/1390 train_time:61308ms step_avg:139.97ms step:449/1390 train_time:61453ms step_avg:139.98ms step:450/1390 train_time:61599ms step_avg:140.00ms step:451/1390 train_time:61744ms step_avg:140.01ms step:452/1390 train_time:61889ms step_avg:140.02ms step:453/1390 train_time:62034ms step_avg:140.03ms step:454/1390 train_time:62179ms step_avg:140.04ms step:455/1390 train_time:62325ms step_avg:140.06ms step:456/1390 train_time:62470ms step_avg:140.07ms step:457/1390 train_time:62616ms step_avg:140.08ms step:458/1390 train_time:62761ms step_avg:140.09ms step:459/1390 train_time:62906ms step_avg:140.10ms step:460/1390 train_time:63051ms step_avg:140.11ms step:461/1390 train_time:63196ms step_avg:140.12ms step:462/1390 train_time:63344ms step_avg:140.14ms step:463/1390 train_time:63489ms step_avg:140.15ms step:464/1390 train_time:63634ms step_avg:140.16ms step:465/1390 train_time:63777ms step_avg:140.17ms step:466/1390 train_time:63922ms step_avg:140.18ms step:467/1390 train_time:64067ms step_avg:140.19ms step:468/1390 train_time:64212ms step_avg:140.20ms step:469/1390 train_time:64358ms step_avg:140.21ms step:470/1390 train_time:64505ms step_avg:140.23ms step:471/1390 train_time:64651ms step_avg:140.24ms step:472/1390 train_time:64795ms step_avg:140.25ms step:473/1390 train_time:64942ms step_avg:140.26ms step:474/1390 train_time:65086ms step_avg:140.27ms step:475/1390 train_time:65231ms step_avg:140.28ms step:476/1390 train_time:65375ms step_avg:140.29ms step:477/1390 train_time:65520ms step_avg:140.30ms step:478/1390 train_time:65664ms step_avg:140.31ms step:479/1390 train_time:65808ms step_avg:140.32ms step:480/1390 train_time:65953ms step_avg:140.33ms step:481/1390 train_time:66097ms step_avg:140.33ms step:482/1390 train_time:66244ms step_avg:140.35ms step:483/1390 train_time:66388ms step_avg:140.36ms step:484/1390 train_time:66534ms step_avg:140.37ms step:485/1390 train_time:66679ms step_avg:140.38ms step:486/1390 train_time:66825ms step_avg:140.39ms step:487/1390 train_time:66969ms step_avg:140.40ms step:488/1390 train_time:67113ms step_avg:140.40ms step:489/1390 train_time:67257ms step_avg:140.41ms step:490/1390 train_time:67401ms step_avg:140.42ms step:491/1390 train_time:67548ms step_avg:140.43ms step:492/1390 train_time:67691ms step_avg:140.44ms step:493/1390 train_time:67838ms step_avg:140.45ms step:494/1390 train_time:67985ms step_avg:140.46ms step:495/1390 train_time:68129ms step_avg:140.47ms step:496/1390 train_time:68275ms step_avg:140.48ms step:497/1390 train_time:68420ms step_avg:140.49ms step:498/1390 train_time:68565ms step_avg:140.50ms step:499/1390 train_time:68711ms step_avg:140.51ms step:500/1390 train_time:68856ms step_avg:140.52ms step:500/1390 val_loss:3.6528 train_time:68927ms step_avg:140.67ms step:501/1390 train_time:69003ms step_avg:140.54ms step:502/1390 train_time:69151ms step_avg:140.55ms step:503/1390 train_time:69296ms step_avg:140.56ms step:504/1390 train_time:69442ms step_avg:140.57ms step:505/1390 train_time:69586ms step_avg:140.58ms step:506/1390 train_time:69731ms step_avg:140.59ms step:507/1390 train_time:69875ms step_avg:140.59ms step:508/1390 train_time:70020ms step_avg:140.60ms step:509/1390 train_time:70166ms step_avg:140.61ms step:510/1390 train_time:70310ms step_avg:140.62ms step:511/1390 train_time:70456ms step_avg:140.63ms step:512/1390 train_time:70603ms step_avg:140.64ms step:513/1390 train_time:70747ms step_avg:140.65ms step:514/1390 train_time:70892ms step_avg:140.66ms step:515/1390 train_time:71036ms step_avg:140.67ms step:516/1390 train_time:71183ms step_avg:140.68ms step:517/1390 train_time:71329ms step_avg:140.69ms step:518/1390 train_time:71475ms step_avg:140.70ms step:519/1390 train_time:71622ms step_avg:140.71ms step:520/1390 train_time:71767ms step_avg:140.72ms step:521/1390 train_time:71913ms step_avg:140.73ms step:522/1390 train_time:72060ms step_avg:140.74ms step:523/1390 train_time:72207ms step_avg:140.75ms step:524/1390 train_time:72353ms step_avg:140.76ms step:525/1390 train_time:72500ms step_avg:140.78ms step:526/1390 train_time:72647ms step_avg:140.79ms step:527/1390 train_time:72793ms step_avg:140.80ms step:528/1390 train_time:72938ms step_avg:140.81ms step:529/1390 train_time:73085ms step_avg:140.82ms step:530/1390 train_time:73231ms step_avg:140.83ms step:531/1390 train_time:73378ms step_avg:140.84ms step:532/1390 train_time:73526ms step_avg:140.86ms step:533/1390 train_time:73674ms step_avg:140.87ms step:534/1390 train_time:73821ms step_avg:140.88ms step:535/1390 train_time:73966ms step_avg:140.89ms step:536/1390 train_time:74115ms step_avg:140.90ms step:537/1390 train_time:74263ms step_avg:140.92ms step:538/1390 train_time:74409ms step_avg:140.93ms step:539/1390 train_time:74558ms step_avg:140.94ms step:540/1390 train_time:74704ms step_avg:140.95ms step:541/1390 train_time:74850ms step_avg:140.96ms step:542/1390 train_time:74997ms step_avg:140.97ms step:543/1390 train_time:75144ms step_avg:140.98ms step:544/1390 train_time:75290ms step_avg:140.99ms step:545/1390 train_time:75437ms step_avg:141.00ms step:546/1390 train_time:75585ms step_avg:141.02ms step:547/1390 train_time:75731ms step_avg:141.03ms step:548/1390 train_time:75879ms step_avg:141.04ms step:549/1390 train_time:76024ms step_avg:141.05ms step:550/1390 train_time:76172ms step_avg:141.06ms step:551/1390 train_time:76318ms step_avg:141.07ms step:552/1390 train_time:76463ms step_avg:141.08ms step:553/1390 train_time:76610ms step_avg:141.09ms step:554/1390 train_time:76758ms step_avg:141.10ms step:555/1390 train_time:76904ms step_avg:141.11ms step:556/1390 train_time:77050ms step_avg:141.12ms step:557/1390 train_time:77197ms step_avg:141.13ms step:558/1390 train_time:77344ms step_avg:141.14ms step:559/1390 train_time:77489ms step_avg:141.15ms step:560/1390 train_time:77636ms step_avg:141.16ms step:561/1390 train_time:77782ms step_avg:141.16ms step:562/1390 train_time:77928ms step_avg:141.17ms step:563/1390 train_time:78072ms step_avg:141.18ms step:564/1390 train_time:78219ms step_avg:141.19ms step:565/1390 train_time:78365ms step_avg:141.20ms step:566/1390 train_time:78512ms step_avg:141.21ms step:567/1390 train_time:78659ms step_avg:141.22ms step:568/1390 train_time:78807ms step_avg:141.23ms step:569/1390 train_time:78955ms step_avg:141.24ms step:570/1390 train_time:79101ms step_avg:141.25ms step:571/1390 train_time:79301ms step_avg:141.36ms step:572/1390 train_time:79446ms step_avg:141.36ms step:573/1390 train_time:79593ms step_avg:141.37ms step:574/1390 train_time:79741ms step_avg:141.38ms step:575/1390 train_time:79886ms step_avg:141.39ms step:576/1390 train_time:80032ms step_avg:141.40ms step:577/1390 train_time:80181ms step_avg:141.41ms step:578/1390 train_time:80329ms step_avg:141.42ms step:579/1390 train_time:80475ms step_avg:141.43ms step:580/1390 train_time:80620ms step_avg:141.44ms step:581/1390 train_time:80765ms step_avg:141.45ms step:582/1390 train_time:80912ms step_avg:141.45ms step:583/1390 train_time:81057ms step_avg:141.46ms step:584/1390 train_time:81205ms step_avg:141.47ms step:585/1390 train_time:81351ms step_avg:141.48ms step:586/1390 train_time:81500ms step_avg:141.49ms step:587/1390 train_time:81647ms step_avg:141.50ms step:588/1390 train_time:81792ms step_avg:141.51ms step:589/1390 train_time:81940ms step_avg:141.52ms step:590/1390 train_time:82087ms step_avg:141.53ms step:591/1390 train_time:82234ms step_avg:141.54ms step:592/1390 train_time:82383ms step_avg:141.55ms step:593/1390 train_time:82531ms step_avg:141.56ms step:594/1390 train_time:82678ms step_avg:141.57ms step:595/1390 train_time:82825ms step_avg:141.58ms step:596/1390 train_time:82972ms step_avg:141.59ms step:597/1390 train_time:83118ms step_avg:141.60ms step:598/1390 train_time:83264ms step_avg:141.61ms step:599/1390 train_time:83410ms step_avg:141.61ms step:600/1390 train_time:83557ms step_avg:141.62ms step:601/1390 train_time:83705ms step_avg:141.63ms step:602/1390 train_time:83852ms step_avg:141.64ms step:603/1390 train_time:83998ms step_avg:141.65ms step:604/1390 train_time:84145ms step_avg:141.66ms step:605/1390 train_time:84291ms step_avg:141.67ms step:606/1390 train_time:84438ms step_avg:141.68ms step:607/1390 train_time:84585ms step_avg:141.68ms step:608/1390 train_time:84734ms step_avg:141.70ms step:609/1390 train_time:84880ms step_avg:141.70ms step:610/1390 train_time:85026ms step_avg:141.71ms step:611/1390 train_time:85173ms step_avg:141.72ms step:612/1390 train_time:85319ms step_avg:141.73ms step:613/1390 train_time:85464ms step_avg:141.73ms step:614/1390 train_time:85612ms step_avg:141.74ms step:615/1390 train_time:85758ms step_avg:141.75ms step:616/1390 train_time:85904ms step_avg:141.76ms step:617/1390 train_time:86050ms step_avg:141.76ms step:618/1390 train_time:86197ms step_avg:141.77ms step:619/1390 train_time:86344ms step_avg:141.78ms step:620/1390 train_time:86491ms step_avg:141.79ms step:621/1390 train_time:86641ms step_avg:141.80ms step:622/1390 train_time:86792ms step_avg:141.82ms step:623/1390 train_time:86940ms step_avg:141.83ms step:624/1390 train_time:87090ms step_avg:141.84ms step:625/1390 train_time:87239ms step_avg:141.85ms step:625/1390 val_loss:3.5728 train_time:87312ms step_avg:141.97ms step:626/1390 train_time:87387ms step_avg:141.86ms step:627/1390 train_time:87538ms step_avg:141.88ms step:628/1390 train_time:87685ms step_avg:141.88ms step:629/1390 train_time:87835ms step_avg:141.90ms step:630/1390 train_time:87982ms step_avg:141.91ms step:631/1390 train_time:88130ms step_avg:141.92ms step:632/1390 train_time:88278ms step_avg:141.93ms step:633/1390 train_time:88427ms step_avg:141.94ms step:634/1390 train_time:88577ms step_avg:141.95ms step:635/1390 train_time:88724ms step_avg:141.96ms step:636/1390 train_time:88873ms step_avg:141.97ms step:637/1390 train_time:89023ms step_avg:141.98ms step:638/1390 train_time:89169ms step_avg:141.99ms step:639/1390 train_time:89317ms step_avg:142.00ms step:640/1390 train_time:89466ms step_avg:142.01ms step:641/1390 train_time:89614ms step_avg:142.02ms step:642/1390 train_time:89762ms step_avg:142.03ms step:643/1390 train_time:89911ms step_avg:142.04ms step:644/1390 train_time:90059ms step_avg:142.05ms step:645/1390 train_time:90207ms step_avg:142.06ms step:646/1390 train_time:90354ms step_avg:142.07ms step:647/1390 train_time:90500ms step_avg:142.07ms step:648/1390 train_time:90648ms step_avg:142.08ms step:649/1390 train_time:90797ms step_avg:142.09ms step:650/1390 train_time:90945ms step_avg:142.10ms step:651/1390 train_time:91093ms step_avg:142.11ms step:652/1390 train_time:91243ms step_avg:142.12ms step:653/1390 train_time:91390ms step_avg:142.13ms step:654/1390 train_time:91539ms step_avg:142.14ms step:655/1390 train_time:91687ms step_avg:142.15ms step:656/1390 train_time:91835ms step_avg:142.16ms step:657/1390 train_time:91982ms step_avg:142.17ms step:658/1390 train_time:92130ms step_avg:142.18ms step:659/1390 train_time:92278ms step_avg:142.19ms step:660/1390 train_time:92426ms step_avg:142.19ms step:661/1390 train_time:92573ms step_avg:142.20ms step:662/1390 train_time:92722ms step_avg:142.21ms step:663/1390 train_time:92870ms step_avg:142.22ms step:664/1390 train_time:93020ms step_avg:142.23ms step:665/1390 train_time:93168ms step_avg:142.24ms step:666/1390 train_time:93317ms step_avg:142.25ms step:667/1390 train_time:93465ms step_avg:142.26ms step:668/1390 train_time:93612ms step_avg:142.27ms step:669/1390 train_time:93761ms step_avg:142.28ms step:670/1390 train_time:93910ms step_avg:142.29ms step:671/1390 train_time:94056ms step_avg:142.29ms step:672/1390 train_time:94204ms step_avg:142.30ms step:673/1390 train_time:94351ms step_avg:142.31ms step:674/1390 train_time:94499ms step_avg:142.32ms step:675/1390 train_time:94647ms step_avg:142.33ms step:676/1390 train_time:94796ms step_avg:142.34ms step:677/1390 train_time:94944ms step_avg:142.35ms step:678/1390 train_time:95092ms step_avg:142.35ms step:679/1390 train_time:95242ms step_avg:142.36ms step:680/1390 train_time:95391ms step_avg:142.37ms step:681/1390 train_time:95541ms step_avg:142.39ms step:682/1390 train_time:95689ms step_avg:142.39ms step:683/1390 train_time:95839ms step_avg:142.41ms step:684/1390 train_time:95987ms step_avg:142.41ms step:685/1390 train_time:96136ms step_avg:142.42ms step:686/1390 train_time:96283ms step_avg:142.43ms step:687/1390 train_time:96432ms step_avg:142.44ms step:688/1390 train_time:96583ms step_avg:142.45ms step:689/1390 train_time:96732ms step_avg:142.46ms step:690/1390 train_time:96879ms step_avg:142.47ms step:691/1390 train_time:97026ms step_avg:142.48ms step:692/1390 train_time:97174ms step_avg:142.48ms step:693/1390 train_time:97321ms step_avg:142.49ms step:694/1390 train_time:97468ms step_avg:142.50ms step:695/1390 train_time:97617ms step_avg:142.51ms step:696/1390 train_time:97765ms step_avg:142.51ms step:697/1390 train_time:97913ms step_avg:142.52ms step:698/1390 train_time:98060ms step_avg:142.53ms step:699/1390 train_time:98210ms step_avg:142.54ms step:700/1390 train_time:98359ms step_avg:142.55ms step:701/1390 train_time:98507ms step_avg:142.56ms step:702/1390 train_time:98654ms step_avg:142.56ms step:703/1390 train_time:98803ms step_avg:142.57ms step:704/1390 train_time:98951ms step_avg:142.58ms step:705/1390 train_time:99098ms step_avg:142.59ms step:706/1390 train_time:99246ms step_avg:142.60ms step:707/1390 train_time:99394ms step_avg:142.60ms step:708/1390 train_time:99543ms step_avg:142.61ms step:709/1390 train_time:99692ms step_avg:142.62ms step:710/1390 train_time:99841ms step_avg:142.63ms step:711/1390 train_time:99989ms step_avg:142.64ms step:712/1390 train_time:100138ms step_avg:142.65ms step:713/1390 train_time:100286ms step_avg:142.65ms step:714/1390 train_time:100434ms step_avg:142.66ms step:715/1390 train_time:100583ms step_avg:142.67ms step:716/1390 train_time:100730ms step_avg:142.68ms step:717/1390 train_time:100879ms step_avg:142.69ms step:718/1390 train_time:101026ms step_avg:142.69ms step:719/1390 train_time:101173ms step_avg:142.70ms step:720/1390 train_time:101322ms step_avg:142.71ms step:721/1390 train_time:101469ms step_avg:142.71ms step:722/1390 train_time:101618ms step_avg:142.72ms step:723/1390 train_time:101765ms step_avg:142.73ms step:724/1390 train_time:101917ms step_avg:142.74ms step:725/1390 train_time:102067ms step_avg:142.75ms step:726/1390 train_time:102220ms step_avg:142.76ms step:727/1390 train_time:102370ms step_avg:142.78ms step:728/1390 train_time:102519ms step_avg:142.78ms step:729/1390 train_time:102668ms step_avg:142.79ms step:730/1390 train_time:102819ms step_avg:142.80ms step:731/1390 train_time:102967ms step_avg:142.81ms step:732/1390 train_time:103116ms step_avg:142.82ms step:733/1390 train_time:103267ms step_avg:142.83ms step:734/1390 train_time:103417ms step_avg:142.84ms step:735/1390 train_time:103565ms step_avg:142.85ms step:736/1390 train_time:103715ms step_avg:142.86ms step:737/1390 train_time:103865ms step_avg:142.87ms step:738/1390 train_time:104014ms step_avg:142.88ms step:739/1390 train_time:104163ms step_avg:142.89ms step:740/1390 train_time:104313ms step_avg:142.90ms step:741/1390 train_time:104464ms step_avg:142.91ms step:742/1390 train_time:104615ms step_avg:142.92ms step:743/1390 train_time:104766ms step_avg:142.93ms step:744/1390 train_time:104916ms step_avg:142.94ms step:745/1390 train_time:105066ms step_avg:142.95ms step:746/1390 train_time:105214ms step_avg:142.95ms step:747/1390 train_time:105363ms step_avg:142.96ms step:748/1390 train_time:105514ms step_avg:142.97ms step:749/1390 train_time:105664ms step_avg:142.98ms step:750/1390 train_time:105813ms step_avg:142.99ms step:750/1390 val_loss:3.5205 train_time:105889ms step_avg:143.09ms step:751/1390 train_time:105965ms step_avg:143.00ms step:752/1390 train_time:106115ms step_avg:143.01ms step:753/1390 train_time:106264ms step_avg:143.02ms step:754/1390 train_time:106414ms step_avg:143.03ms step:755/1390 train_time:106564ms step_avg:143.04ms step:756/1390 train_time:106712ms step_avg:143.05ms step:757/1390 train_time:106865ms step_avg:143.06ms step:758/1390 train_time:107014ms step_avg:143.07ms step:759/1390 train_time:107164ms step_avg:143.08ms step:760/1390 train_time:107312ms step_avg:143.08ms step:761/1390 train_time:107513ms step_avg:143.16ms step:762/1390 train_time:107661ms step_avg:143.17ms step:763/1390 train_time:107810ms step_avg:143.17ms step:764/1390 train_time:107958ms step_avg:143.18ms step:765/1390 train_time:108108ms step_avg:143.19ms step:766/1390 train_time:108257ms step_avg:143.20ms step:767/1390 train_time:108407ms step_avg:143.21ms step:768/1390 train_time:108562ms step_avg:143.22ms step:769/1390 train_time:108712ms step_avg:143.23ms step:770/1390 train_time:108860ms step_avg:143.24ms step:771/1390 train_time:109010ms step_avg:143.25ms step:772/1390 train_time:109158ms step_avg:143.25ms step:773/1390 train_time:109309ms step_avg:143.26ms step:774/1390 train_time:109460ms step_avg:143.27ms step:775/1390 train_time:109610ms step_avg:143.28ms step:776/1390 train_time:109761ms step_avg:143.29ms step:777/1390 train_time:109911ms step_avg:143.30ms step:778/1390 train_time:110059ms step_avg:143.31ms step:779/1390 train_time:110209ms step_avg:143.31ms step:780/1390 train_time:110358ms step_avg:143.32ms step:781/1390 train_time:110507ms step_avg:143.33ms step:782/1390 train_time:110657ms step_avg:143.34ms step:783/1390 train_time:110806ms step_avg:143.35ms step:784/1390 train_time:110955ms step_avg:143.35ms step:785/1390 train_time:111103ms step_avg:143.36ms step:786/1390 train_time:111254ms step_avg:143.37ms step:787/1390 train_time:111405ms step_avg:143.38ms step:788/1390 train_time:111553ms step_avg:143.38ms step:789/1390 train_time:111703ms step_avg:143.39ms step:790/1390 train_time:111853ms step_avg:143.40ms step:791/1390 train_time:112002ms step_avg:143.41ms step:792/1390 train_time:112153ms step_avg:143.42ms step:793/1390 train_time:112302ms step_avg:143.43ms step:794/1390 train_time:112453ms step_avg:143.44ms step:795/1390 train_time:112605ms step_avg:143.45ms step:796/1390 train_time:112754ms step_avg:143.45ms step:797/1390 train_time:112904ms step_avg:143.46ms step:798/1390 train_time:113052ms step_avg:143.47ms step:799/1390 train_time:113203ms step_avg:143.48ms step:800/1390 train_time:113352ms step_avg:143.48ms step:801/1390 train_time:113501ms step_avg:143.49ms step:802/1390 train_time:113652ms step_avg:143.50ms step:803/1390 train_time:113800ms step_avg:143.51ms step:804/1390 train_time:113950ms step_avg:143.51ms step:805/1390 train_time:114099ms step_avg:143.52ms step:806/1390 train_time:114249ms step_avg:143.53ms step:807/1390 train_time:114398ms step_avg:143.54ms step:808/1390 train_time:114550ms step_avg:143.55ms step:809/1390 train_time:114699ms step_avg:143.55ms step:810/1390 train_time:114848ms step_avg:143.56ms step:811/1390 train_time:114997ms step_avg:143.57ms step:812/1390 train_time:115148ms step_avg:143.58ms step:813/1390 train_time:115297ms step_avg:143.58ms step:814/1390 train_time:115447ms step_avg:143.59ms step:815/1390 train_time:115594ms step_avg:143.60ms step:816/1390 train_time:115743ms step_avg:143.60ms step:817/1390 train_time:115893ms step_avg:143.61ms step:818/1390 train_time:116041ms step_avg:143.62ms step:819/1390 train_time:116191ms step_avg:143.62ms step:820/1390 train_time:116341ms step_avg:143.63ms step:821/1390 train_time:116491ms step_avg:143.64ms step:822/1390 train_time:116639ms step_avg:143.64ms step:823/1390 train_time:116788ms step_avg:143.65ms step:824/1390 train_time:116935ms step_avg:143.66ms step:825/1390 train_time:117086ms step_avg:143.66ms step:826/1390 train_time:117237ms step_avg:143.67ms step:827/1390 train_time:117388ms step_avg:143.68ms step:828/1390 train_time:117538ms step_avg:143.69ms step:829/1390 train_time:117689ms step_avg:143.70ms step:830/1390 train_time:117841ms step_avg:143.71ms step:831/1390 train_time:117993ms step_avg:143.72ms step:832/1390 train_time:118144ms step_avg:143.73ms step:833/1390 train_time:118294ms step_avg:143.74ms step:834/1390 train_time:118447ms step_avg:143.75ms step:835/1390 train_time:118598ms step_avg:143.76ms step:836/1390 train_time:118750ms step_avg:143.77ms step:837/1390 train_time:118900ms step_avg:143.77ms step:838/1390 train_time:119050ms step_avg:143.78ms step:839/1390 train_time:119201ms step_avg:143.79ms step:840/1390 train_time:119350ms step_avg:143.80ms step:841/1390 train_time:119501ms step_avg:143.80ms step:842/1390 train_time:119652ms step_avg:143.81ms step:843/1390 train_time:119803ms step_avg:143.82ms step:844/1390 train_time:119953ms step_avg:143.83ms step:845/1390 train_time:120103ms step_avg:143.84ms step:846/1390 train_time:120255ms step_avg:143.85ms step:847/1390 train_time:120405ms step_avg:143.85ms step:848/1390 train_time:120553ms step_avg:143.86ms step:849/1390 train_time:120706ms step_avg:143.87ms step:850/1390 train_time:120857ms step_avg:143.88ms step:851/1390 train_time:121011ms step_avg:143.89ms step:852/1390 train_time:121163ms step_avg:143.90ms step:853/1390 train_time:121311ms step_avg:143.90ms step:854/1390 train_time:121463ms step_avg:143.91ms step:855/1390 train_time:121611ms step_avg:143.92ms step:856/1390 train_time:121761ms step_avg:143.93ms step:857/1390 train_time:121910ms step_avg:143.93ms step:858/1390 train_time:122063ms step_avg:143.94ms step:859/1390 train_time:122213ms step_avg:143.95ms step:860/1390 train_time:122362ms step_avg:143.96ms step:861/1390 train_time:122514ms step_avg:143.96ms step:862/1390 train_time:122664ms step_avg:143.97ms step:863/1390 train_time:122815ms step_avg:143.98ms step:864/1390 train_time:122966ms step_avg:143.99ms step:865/1390 train_time:123114ms step_avg:143.99ms step:866/1390 train_time:123270ms step_avg:144.01ms step:867/1390 train_time:123419ms step_avg:144.01ms step:868/1390 train_time:123568ms step_avg:144.02ms step:869/1390 train_time:123717ms step_avg:144.02ms step:870/1390 train_time:123868ms step_avg:144.03ms step:871/1390 train_time:124020ms step_avg:144.04ms step:872/1390 train_time:124171ms step_avg:144.05ms step:873/1390 train_time:124323ms step_avg:144.06ms step:874/1390 train_time:124475ms step_avg:144.07ms step:875/1390 train_time:124626ms step_avg:144.08ms step:875/1390 val_loss:3.4715 train_time:124700ms step_avg:144.16ms step:876/1390 train_time:124777ms step_avg:144.08ms step:877/1390 train_time:124932ms step_avg:144.10ms step:878/1390 train_time:125083ms step_avg:144.11ms step:879/1390 train_time:125234ms step_avg:144.11ms step:880/1390 train_time:125383ms step_avg:144.12ms step:881/1390 train_time:125532ms step_avg:144.12ms step:882/1390 train_time:125682ms step_avg:144.13ms step:883/1390 train_time:125833ms step_avg:144.14ms step:884/1390 train_time:125985ms step_avg:144.15ms step:885/1390 train_time:126136ms step_avg:144.16ms step:886/1390 train_time:126286ms step_avg:144.16ms step:887/1390 train_time:126436ms step_avg:144.17ms step:888/1390 train_time:126591ms step_avg:144.18ms step:889/1390 train_time:126742ms step_avg:144.19ms step:890/1390 train_time:126893ms step_avg:144.20ms step:891/1390 train_time:127046ms step_avg:144.21ms step:892/1390 train_time:127196ms step_avg:144.21ms step:893/1390 train_time:127346ms step_avg:144.22ms step:894/1390 train_time:127496ms step_avg:144.23ms step:895/1390 train_time:127647ms step_avg:144.23ms step:896/1390 train_time:127796ms step_avg:144.24ms step:897/1390 train_time:127949ms step_avg:144.25ms step:898/1390 train_time:128102ms step_avg:144.26ms step:899/1390 train_time:128254ms step_avg:144.27ms step:900/1390 train_time:128403ms step_avg:144.27ms step:901/1390 train_time:128553ms step_avg:144.28ms step:902/1390 train_time:128702ms step_avg:144.28ms step:903/1390 train_time:128854ms step_avg:144.29ms step:904/1390 train_time:129006ms step_avg:144.30ms step:905/1390 train_time:129154ms step_avg:144.31ms step:906/1390 train_time:129305ms step_avg:144.31ms step:907/1390 train_time:129459ms step_avg:144.32ms step:908/1390 train_time:129610ms step_avg:144.33ms step:909/1390 train_time:129762ms step_avg:144.34ms step:910/1390 train_time:129914ms step_avg:144.35ms step:911/1390 train_time:130067ms step_avg:144.36ms step:912/1390 train_time:130218ms step_avg:144.37ms step:913/1390 train_time:130369ms step_avg:144.37ms step:914/1390 train_time:130519ms step_avg:144.38ms step:915/1390 train_time:130673ms step_avg:144.39ms step:916/1390 train_time:130823ms step_avg:144.40ms step:917/1390 train_time:130974ms step_avg:144.40ms step:918/1390 train_time:131127ms step_avg:144.41ms step:919/1390 train_time:131282ms step_avg:144.42ms step:920/1390 train_time:131434ms step_avg:144.43ms step:921/1390 train_time:131587ms step_avg:144.44ms step:922/1390 train_time:131737ms step_avg:144.45ms step:923/1390 train_time:131886ms step_avg:144.45ms step:924/1390 train_time:132037ms step_avg:144.46ms step:925/1390 train_time:132189ms step_avg:144.47ms step:926/1390 train_time:132339ms step_avg:144.48ms step:927/1390 train_time:132492ms step_avg:144.48ms step:928/1390 train_time:132644ms step_avg:144.49ms step:929/1390 train_time:132796ms step_avg:144.50ms step:930/1390 train_time:132948ms step_avg:144.51ms step:931/1390 train_time:133100ms step_avg:144.52ms step:932/1390 train_time:133253ms step_avg:144.53ms step:933/1390 train_time:133404ms step_avg:144.53ms step:934/1390 train_time:133555ms step_avg:144.54ms step:935/1390 train_time:133711ms step_avg:144.55ms step:936/1390 train_time:133863ms step_avg:144.56ms step:937/1390 train_time:134020ms step_avg:144.57ms step:938/1390 train_time:134174ms step_avg:144.58ms step:939/1390 train_time:134326ms step_avg:144.59ms step:940/1390 train_time:134479ms step_avg:144.60ms step:941/1390 train_time:134630ms step_avg:144.61ms step:942/1390 train_time:134784ms step_avg:144.62ms step:943/1390 train_time:134942ms step_avg:144.63ms step:944/1390 train_time:135101ms step_avg:144.65ms step:945/1390 train_time:135254ms step_avg:144.66ms step:946/1390 train_time:135407ms step_avg:144.67ms step:947/1390 train_time:135560ms step_avg:144.67ms step:948/1390 train_time:135713ms step_avg:144.68ms step:949/1390 train_time:135866ms step_avg:144.69ms step:950/1390 train_time:136016ms step_avg:144.70ms step:951/1390 train_time:136215ms step_avg:144.76ms step:952/1390 train_time:136367ms step_avg:144.76ms step:953/1390 train_time:136518ms step_avg:144.77ms step:954/1390 train_time:136669ms step_avg:144.78ms step:955/1390 train_time:136821ms step_avg:144.78ms step:956/1390 train_time:136976ms step_avg:144.80ms step:957/1390 train_time:137131ms step_avg:144.81ms step:958/1390 train_time:137284ms step_avg:144.81ms step:959/1390 train_time:137440ms step_avg:144.83ms step:960/1390 train_time:137595ms step_avg:144.84ms step:961/1390 train_time:137746ms step_avg:144.84ms step:962/1390 train_time:137899ms step_avg:144.85ms step:963/1390 train_time:138055ms step_avg:144.86ms step:964/1390 train_time:138206ms step_avg:144.87ms step:965/1390 train_time:138357ms step_avg:144.88ms step:966/1390 train_time:138508ms step_avg:144.88ms step:967/1390 train_time:138660ms step_avg:144.89ms step:968/1390 train_time:138812ms step_avg:144.90ms step:969/1390 train_time:138968ms step_avg:144.91ms step:970/1390 train_time:139120ms step_avg:144.92ms step:971/1390 train_time:139272ms step_avg:144.92ms step:972/1390 train_time:139422ms step_avg:144.93ms step:973/1390 train_time:139575ms step_avg:144.94ms step:974/1390 train_time:139727ms step_avg:144.95ms step:975/1390 train_time:139877ms step_avg:144.95ms step:976/1390 train_time:140029ms step_avg:144.96ms step:977/1390 train_time:140180ms step_avg:144.96ms step:978/1390 train_time:140334ms step_avg:144.97ms step:979/1390 train_time:140485ms step_avg:144.98ms step:980/1390 train_time:140635ms step_avg:144.98ms step:981/1390 train_time:140785ms step_avg:144.99ms step:982/1390 train_time:140935ms step_avg:145.00ms step:983/1390 train_time:141085ms step_avg:145.00ms step:984/1390 train_time:141236ms step_avg:145.01ms step:985/1390 train_time:141390ms step_avg:145.02ms step:986/1390 train_time:141545ms step_avg:145.03ms step:987/1390 train_time:141696ms step_avg:145.03ms step:988/1390 train_time:141847ms step_avg:145.04ms step:989/1390 train_time:141998ms step_avg:145.04ms step:990/1390 train_time:142152ms step_avg:145.05ms step:991/1390 train_time:142303ms step_avg:145.06ms step:992/1390 train_time:142457ms step_avg:145.07ms step:993/1390 train_time:142613ms step_avg:145.08ms step:994/1390 train_time:142764ms step_avg:145.09ms step:995/1390 train_time:142915ms step_avg:145.09ms step:996/1390 train_time:143065ms step_avg:145.10ms step:997/1390 train_time:143216ms step_avg:145.10ms step:998/1390 train_time:143366ms step_avg:145.11ms step:999/1390 train_time:143518ms step_avg:145.11ms step:1000/1390 train_time:143670ms step_avg:145.12ms step:1000/1390 val_loss:3.4056 train_time:143749ms step_avg:145.20ms step:1001/1390 train_time:143826ms step_avg:145.13ms step:1002/1390 train_time:143978ms step_avg:145.14ms step:1003/1390 train_time:144132ms step_avg:145.15ms step:1004/1390 train_time:144283ms step_avg:145.15ms step:1005/1390 train_time:144435ms step_avg:145.16ms step:1006/1390 train_time:144587ms step_avg:145.17ms step:1007/1390 train_time:144739ms step_avg:145.17ms step:1008/1390 train_time:144893ms step_avg:145.18ms step:1009/1390 train_time:145047ms step_avg:145.19ms step:1010/1390 train_time:145198ms step_avg:145.20ms step:1011/1390 train_time:145349ms step_avg:145.20ms step:1012/1390 train_time:145500ms step_avg:145.21ms step:1013/1390 train_time:145654ms step_avg:145.22ms step:1014/1390 train_time:145805ms step_avg:145.22ms step:1015/1390 train_time:145958ms step_avg:145.23ms step:1016/1390 train_time:146110ms step_avg:145.24ms step:1017/1390 train_time:146264ms step_avg:145.25ms step:1018/1390 train_time:146415ms step_avg:145.25ms step:1019/1390 train_time:146568ms step_avg:145.26ms step:1020/1390 train_time:146724ms step_avg:145.27ms step:1021/1390 train_time:146875ms step_avg:145.28ms step:1022/1390 train_time:147026ms step_avg:145.28ms step:1023/1390 train_time:147179ms step_avg:145.29ms step:1024/1390 train_time:147331ms step_avg:145.30ms step:1025/1390 train_time:147486ms step_avg:145.31ms step:1026/1390 train_time:147638ms step_avg:145.31ms step:1027/1390 train_time:147791ms step_avg:145.32ms step:1028/1390 train_time:147945ms step_avg:145.33ms step:1029/1390 train_time:148100ms step_avg:145.34ms step:1030/1390 train_time:148251ms step_avg:145.34ms step:1031/1390 train_time:148402ms step_avg:145.35ms step:1032/1390 train_time:148555ms step_avg:145.36ms step:1033/1390 train_time:148707ms step_avg:145.36ms step:1034/1390 train_time:148861ms step_avg:145.37ms step:1035/1390 train_time:149019ms step_avg:145.38ms step:1036/1390 train_time:149171ms step_avg:145.39ms step:1037/1390 train_time:149327ms step_avg:145.40ms step:1038/1390 train_time:149485ms step_avg:145.41ms step:1039/1390 train_time:149637ms step_avg:145.42ms step:1040/1390 train_time:149788ms step_avg:145.43ms step:1041/1390 train_time:149941ms step_avg:145.43ms step:1042/1390 train_time:150094ms step_avg:145.44ms step:1043/1390 train_time:150248ms step_avg:145.45ms step:1044/1390 train_time:150404ms step_avg:145.46ms step:1045/1390 train_time:150561ms step_avg:145.47ms step:1046/1390 train_time:150714ms step_avg:145.48ms step:1047/1390 train_time:150867ms step_avg:145.48ms step:1048/1390 train_time:151019ms step_avg:145.49ms step:1049/1390 train_time:151171ms step_avg:145.50ms step:1050/1390 train_time:151323ms step_avg:145.50ms step:1051/1390 train_time:151475ms step_avg:145.51ms step:1052/1390 train_time:151629ms step_avg:145.52ms step:1053/1390 train_time:151779ms step_avg:145.52ms step:1054/1390 train_time:151932ms step_avg:145.53ms step:1055/1390 train_time:152084ms step_avg:145.54ms step:1056/1390 train_time:152234ms step_avg:145.54ms step:1057/1390 train_time:152385ms step_avg:145.54ms step:1058/1390 train_time:152540ms step_avg:145.55ms step:1059/1390 train_time:152698ms step_avg:145.57ms step:1060/1390 train_time:152851ms step_avg:145.57ms step:1061/1390 train_time:153003ms step_avg:145.58ms step:1062/1390 train_time:153157ms step_avg:145.59ms step:1063/1390 train_time:153308ms step_avg:145.59ms step:1064/1390 train_time:153459ms step_avg:145.60ms step:1065/1390 train_time:153614ms step_avg:145.61ms step:1066/1390 train_time:153768ms step_avg:145.61ms step:1067/1390 train_time:153924ms step_avg:145.62ms step:1068/1390 train_time:154074ms step_avg:145.63ms step:1069/1390 train_time:154227ms step_avg:145.63ms step:1070/1390 train_time:154378ms step_avg:145.64ms step:1071/1390 train_time:154535ms step_avg:145.65ms step:1072/1390 train_time:154687ms step_avg:145.66ms step:1073/1390 train_time:154838ms step_avg:145.66ms step:1074/1390 train_time:154990ms step_avg:145.67ms step:1075/1390 train_time:155145ms step_avg:145.68ms step:1076/1390 train_time:155299ms step_avg:145.68ms step:1077/1390 train_time:155452ms step_avg:145.69ms step:1078/1390 train_time:155608ms step_avg:145.70ms step:1079/1390 train_time:155764ms step_avg:145.71ms step:1080/1390 train_time:155917ms step_avg:145.72ms step:1081/1390 train_time:156070ms step_avg:145.72ms step:1082/1390 train_time:156222ms step_avg:145.73ms step:1083/1390 train_time:156375ms step_avg:145.74ms step:1084/1390 train_time:156531ms step_avg:145.75ms step:1085/1390 train_time:156685ms step_avg:145.75ms step:1086/1390 train_time:156837ms step_avg:145.76ms step:1087/1390 train_time:156988ms step_avg:145.76ms step:1088/1390 train_time:157141ms step_avg:145.77ms step:1089/1390 train_time:157295ms step_avg:145.78ms step:1090/1390 train_time:157449ms step_avg:145.79ms step:1091/1390 train_time:157603ms step_avg:145.79ms step:1092/1390 train_time:157756ms step_avg:145.80ms step:1093/1390 train_time:157909ms step_avg:145.81ms step:1094/1390 train_time:158062ms step_avg:145.81ms step:1095/1390 train_time:158214ms step_avg:145.82ms step:1096/1390 train_time:158369ms step_avg:145.83ms step:1097/1390 train_time:158524ms step_avg:145.84ms step:1098/1390 train_time:158680ms step_avg:145.85ms step:1099/1390 train_time:158833ms step_avg:145.85ms step:1100/1390 train_time:158985ms step_avg:145.86ms step:1101/1390 train_time:159139ms step_avg:145.87ms step:1102/1390 train_time:159291ms step_avg:145.87ms step:1103/1390 train_time:159445ms step_avg:145.88ms step:1104/1390 train_time:159596ms step_avg:145.88ms step:1105/1390 train_time:159752ms step_avg:145.89ms step:1106/1390 train_time:159907ms step_avg:145.90ms step:1107/1390 train_time:160059ms step_avg:145.91ms step:1108/1390 train_time:160215ms step_avg:145.92ms step:1109/1390 train_time:160366ms step_avg:145.92ms step:1110/1390 train_time:160519ms step_avg:145.93ms step:1111/1390 train_time:160671ms step_avg:145.93ms step:1112/1390 train_time:160823ms step_avg:145.94ms step:1113/1390 train_time:160974ms step_avg:145.94ms step:1114/1390 train_time:161131ms step_avg:145.95ms step:1115/1390 train_time:161287ms step_avg:145.96ms step:1116/1390 train_time:161438ms step_avg:145.97ms step:1117/1390 train_time:161590ms step_avg:145.97ms step:1118/1390 train_time:161748ms step_avg:145.98ms step:1119/1390 train_time:161900ms step_avg:145.99ms step:1120/1390 train_time:162054ms step_avg:145.99ms step:1121/1390 train_time:162208ms step_avg:146.00ms step:1122/1390 train_time:162359ms step_avg:146.01ms step:1123/1390 train_time:162513ms step_avg:146.01ms step:1124/1390 train_time:162667ms step_avg:146.02ms step:1125/1390 train_time:162818ms step_avg:146.03ms step:1125/1390 val_loss:3.3537 train_time:162895ms step_avg:146.09ms step:1126/1390 train_time:162974ms step_avg:146.03ms step:1127/1390 train_time:163133ms step_avg:146.05ms step:1128/1390 train_time:163290ms step_avg:146.06ms step:1129/1390 train_time:163448ms step_avg:146.07ms step:1130/1390 train_time:163600ms step_avg:146.07ms step:1131/1390 train_time:163758ms step_avg:146.08ms step:1132/1390 train_time:163911ms step_avg:146.09ms step:1133/1390 train_time:164065ms step_avg:146.09ms step:1134/1390 train_time:164218ms step_avg:146.10ms step:1135/1390 train_time:164374ms step_avg:146.11ms step:1136/1390 train_time:164533ms step_avg:146.12ms step:1137/1390 train_time:164685ms step_avg:146.13ms step:1138/1390 train_time:164844ms step_avg:146.14ms step:1139/1390 train_time:164998ms step_avg:146.15ms step:1140/1390 train_time:165151ms step_avg:146.15ms step:1141/1390 train_time:165356ms step_avg:146.20ms step:1142/1390 train_time:165508ms step_avg:146.21ms step:1143/1390 train_time:165662ms step_avg:146.22ms step:1144/1390 train_time:165816ms step_avg:146.22ms step:1145/1390 train_time:165967ms step_avg:146.23ms step:1146/1390 train_time:166121ms step_avg:146.23ms step:1147/1390 train_time:166278ms step_avg:146.24ms step:1148/1390 train_time:166435ms step_avg:146.25ms step:1149/1390 train_time:166590ms step_avg:146.26ms step:1150/1390 train_time:166743ms step_avg:146.27ms step:1151/1390 train_time:166902ms step_avg:146.28ms step:1152/1390 train_time:167057ms step_avg:146.29ms step:1153/1390 train_time:167215ms step_avg:146.29ms step:1154/1390 train_time:167365ms step_avg:146.30ms step:1155/1390 train_time:167520ms step_avg:146.31ms step:1156/1390 train_time:167681ms step_avg:146.32ms step:1157/1390 train_time:167836ms step_avg:146.33ms step:1158/1390 train_time:167991ms step_avg:146.33ms step:1159/1390 train_time:168143ms step_avg:146.34ms step:1160/1390 train_time:168296ms step_avg:146.34ms step:1161/1390 train_time:168453ms step_avg:146.35ms step:1162/1390 train_time:168606ms step_avg:146.36ms step:1163/1390 train_time:168761ms step_avg:146.37ms step:1164/1390 train_time:168917ms step_avg:146.38ms step:1165/1390 train_time:169069ms step_avg:146.38ms step:1166/1390 train_time:169222ms step_avg:146.39ms step:1167/1390 train_time:169375ms step_avg:146.39ms step:1168/1390 train_time:169531ms step_avg:146.40ms step:1169/1390 train_time:169684ms step_avg:146.41ms step:1170/1390 train_time:169838ms step_avg:146.41ms step:1171/1390 train_time:169991ms step_avg:146.42ms step:1172/1390 train_time:170142ms step_avg:146.42ms step:1173/1390 train_time:170296ms step_avg:146.43ms step:1174/1390 train_time:170461ms step_avg:146.44ms step:1175/1390 train_time:170615ms step_avg:146.45ms step:1176/1390 train_time:170772ms step_avg:146.46ms step:1177/1390 train_time:170931ms step_avg:146.47ms step:1178/1390 train_time:171084ms step_avg:146.48ms step:1179/1390 train_time:171234ms step_avg:146.48ms step:1180/1390 train_time:171394ms step_avg:146.49ms step:1181/1390 train_time:171547ms step_avg:146.50ms step:1182/1390 train_time:171701ms step_avg:146.50ms step:1183/1390 train_time:171855ms step_avg:146.51ms step:1184/1390 train_time:172009ms step_avg:146.52ms step:1185/1390 train_time:172164ms step_avg:146.52ms step:1186/1390 train_time:172320ms step_avg:146.53ms step:1187/1390 train_time:172484ms step_avg:146.55ms step:1188/1390 train_time:172636ms step_avg:146.55ms step:1189/1390 train_time:172796ms step_avg:146.56ms step:1190/1390 train_time:172952ms step_avg:146.57ms step:1191/1390 train_time:173106ms step_avg:146.58ms step:1192/1390 train_time:173258ms step_avg:146.58ms step:1193/1390 train_time:173410ms step_avg:146.58ms step:1194/1390 train_time:173563ms step_avg:146.59ms step:1195/1390 train_time:173719ms step_avg:146.60ms step:1196/1390 train_time:173875ms step_avg:146.61ms step:1197/1390 train_time:174030ms step_avg:146.61ms step:1198/1390 train_time:174190ms step_avg:146.62ms step:1199/1390 train_time:174343ms step_avg:146.63ms step:1200/1390 train_time:174495ms step_avg:146.63ms step:1201/1390 train_time:174647ms step_avg:146.64ms step:1202/1390 train_time:174813ms step_avg:146.66ms step:1203/1390 train_time:174971ms step_avg:146.66ms step:1204/1390 train_time:175126ms step_avg:146.67ms step:1205/1390 train_time:175281ms step_avg:146.68ms step:1206/1390 train_time:175436ms step_avg:146.69ms step:1207/1390 train_time:175591ms step_avg:146.69ms step:1208/1390 train_time:175746ms step_avg:146.70ms step:1209/1390 train_time:175902ms step_avg:146.71ms step:1210/1390 train_time:176058ms step_avg:146.72ms step:1211/1390 train_time:176215ms step_avg:146.72ms step:1212/1390 train_time:176371ms step_avg:146.73ms step:1213/1390 train_time:176524ms step_avg:146.74ms step:1214/1390 train_time:176680ms step_avg:146.74ms step:1215/1390 train_time:176837ms step_avg:146.75ms step:1216/1390 train_time:176989ms step_avg:146.76ms step:1217/1390 train_time:177144ms step_avg:146.76ms step:1218/1390 train_time:177298ms step_avg:146.77ms step:1219/1390 train_time:177451ms step_avg:146.77ms step:1220/1390 train_time:177604ms step_avg:146.78ms step:1221/1390 train_time:177758ms step_avg:146.79ms step:1222/1390 train_time:177910ms step_avg:146.79ms step:1223/1390 train_time:178064ms step_avg:146.80ms step:1224/1390 train_time:178221ms step_avg:146.81ms step:1225/1390 train_time:178378ms step_avg:146.81ms step:1226/1390 train_time:178532ms step_avg:146.82ms step:1227/1390 train_time:178685ms step_avg:146.82ms step:1228/1390 train_time:178838ms step_avg:146.83ms step:1229/1390 train_time:178992ms step_avg:146.84ms step:1230/1390 train_time:179153ms step_avg:146.85ms step:1231/1390 train_time:179308ms step_avg:146.85ms step:1232/1390 train_time:179463ms step_avg:146.86ms step:1233/1390 train_time:179617ms step_avg:146.87ms step:1234/1390 train_time:179771ms step_avg:146.87ms step:1235/1390 train_time:179925ms step_avg:146.88ms step:1236/1390 train_time:180081ms step_avg:146.89ms step:1237/1390 train_time:180234ms step_avg:146.89ms step:1238/1390 train_time:180401ms step_avg:146.91ms step:1239/1390 train_time:180559ms step_avg:146.92ms step:1240/1390 train_time:180717ms step_avg:146.92ms step:1241/1390 train_time:180874ms step_avg:146.93ms step:1242/1390 train_time:181031ms step_avg:146.94ms step:1243/1390 train_time:181192ms step_avg:146.95ms step:1244/1390 train_time:181345ms step_avg:146.96ms step:1245/1390 train_time:181502ms step_avg:146.96ms step:1246/1390 train_time:181657ms step_avg:146.97ms step:1247/1390 train_time:181811ms step_avg:146.98ms step:1248/1390 train_time:181963ms step_avg:146.98ms step:1249/1390 train_time:182116ms step_avg:146.99ms step:1250/1390 train_time:182271ms step_avg:146.99ms step:1250/1390 val_loss:3.3076 train_time:182355ms step_avg:147.06ms step:1251/1390 train_time:182435ms step_avg:147.01ms step:1252/1390 train_time:182592ms step_avg:147.01ms step:1253/1390 train_time:182744ms step_avg:147.02ms step:1254/1390 train_time:182898ms step_avg:147.02ms step:1255/1390 train_time:183065ms step_avg:147.04ms step:1256/1390 train_time:183221ms step_avg:147.05ms step:1257/1390 train_time:183376ms step_avg:147.05ms step:1258/1390 train_time:183538ms step_avg:147.07ms step:1259/1390 train_time:183701ms step_avg:147.08ms step:1260/1390 train_time:183854ms step_avg:147.08ms step:1261/1390 train_time:184013ms step_avg:147.09ms step:1262/1390 train_time:184170ms step_avg:147.10ms step:1263/1390 train_time:184325ms step_avg:147.11ms step:1264/1390 train_time:184479ms step_avg:147.11ms step:1265/1390 train_time:184632ms step_avg:147.12ms step:1266/1390 train_time:184791ms step_avg:147.13ms step:1267/1390 train_time:184947ms step_avg:147.13ms step:1268/1390 train_time:185104ms step_avg:147.14ms step:1269/1390 train_time:185265ms step_avg:147.15ms step:1270/1390 train_time:185420ms step_avg:147.16ms step:1271/1390 train_time:185573ms step_avg:147.16ms step:1272/1390 train_time:185724ms step_avg:147.17ms step:1273/1390 train_time:185879ms step_avg:147.17ms step:1274/1390 train_time:186036ms step_avg:147.18ms step:1275/1390 train_time:186192ms step_avg:147.19ms step:1276/1390 train_time:186345ms step_avg:147.19ms step:1277/1390 train_time:186501ms step_avg:147.20ms step:1278/1390 train_time:186655ms step_avg:147.20ms step:1279/1390 train_time:186811ms step_avg:147.21ms step:1280/1390 train_time:186976ms step_avg:147.22ms step:1281/1390 train_time:187131ms step_avg:147.23ms step:1282/1390 train_time:187285ms step_avg:147.24ms step:1283/1390 train_time:187440ms step_avg:147.24ms step:1284/1390 train_time:187595ms step_avg:147.25ms step:1285/1390 train_time:187752ms step_avg:147.26ms step:1286/1390 train_time:187908ms step_avg:147.26ms step:1287/1390 train_time:188062ms step_avg:147.27ms step:1288/1390 train_time:188217ms step_avg:147.27ms step:1289/1390 train_time:188378ms step_avg:147.29ms step:1290/1390 train_time:188540ms step_avg:147.30ms step:1291/1390 train_time:188698ms step_avg:147.30ms step:1292/1390 train_time:188856ms step_avg:147.31ms step:1293/1390 train_time:189018ms step_avg:147.33ms step:1294/1390 train_time:189173ms step_avg:147.33ms step:1295/1390 train_time:189326ms step_avg:147.34ms step:1296/1390 train_time:189481ms step_avg:147.34ms step:1297/1390 train_time:189642ms step_avg:147.35ms step:1298/1390 train_time:189797ms step_avg:147.36ms step:1299/1390 train_time:189951ms step_avg:147.36ms step:1300/1390 train_time:190104ms step_avg:147.37ms step:1301/1390 train_time:190259ms step_avg:147.37ms step:1302/1390 train_time:190413ms step_avg:147.38ms step:1303/1390 train_time:190572ms step_avg:147.39ms step:1304/1390 train_time:190728ms step_avg:147.39ms step:1305/1390 train_time:190882ms step_avg:147.40ms step:1306/1390 train_time:191038ms step_avg:147.41ms step:1307/1390 train_time:191191ms step_avg:147.41ms step:1308/1390 train_time:191348ms step_avg:147.42ms step:1309/1390 train_time:191505ms step_avg:147.42ms step:1310/1390 train_time:191658ms step_avg:147.43ms step:1311/1390 train_time:191812ms step_avg:147.43ms step:1312/1390 train_time:191965ms step_avg:147.44ms step:1313/1390 train_time:192123ms step_avg:147.45ms step:1314/1390 train_time:192279ms step_avg:147.45ms step:1315/1390 train_time:192436ms step_avg:147.46ms step:1316/1390 train_time:192590ms step_avg:147.47ms step:1317/1390 train_time:192745ms step_avg:147.47ms step:1318/1390 train_time:192907ms step_avg:147.48ms step:1319/1390 train_time:193064ms step_avg:147.49ms step:1320/1390 train_time:193218ms step_avg:147.49ms step:1321/1390 train_time:193371ms step_avg:147.50ms step:1322/1390 train_time:193531ms step_avg:147.51ms step:1323/1390 train_time:193688ms step_avg:147.52ms step:1324/1390 train_time:193842ms step_avg:147.52ms step:1325/1390 train_time:194001ms step_avg:147.53ms step:1326/1390 train_time:194160ms step_avg:147.54ms step:1327/1390 train_time:194315ms step_avg:147.54ms step:1328/1390 train_time:194466ms step_avg:147.55ms step:1329/1390 train_time:194633ms step_avg:147.56ms step:1330/1390 train_time:194790ms step_avg:147.57ms step:1331/1390 train_time:194998ms step_avg:147.61ms step:1332/1390 train_time:195159ms step_avg:147.62ms step:1333/1390 train_time:195316ms step_avg:147.63ms step:1334/1390 train_time:195473ms step_avg:147.64ms step:1335/1390 train_time:195623ms step_avg:147.64ms step:1336/1390 train_time:195785ms step_avg:147.65ms step:1337/1390 train_time:195946ms step_avg:147.66ms step:1338/1390 train_time:196102ms step_avg:147.67ms step:1339/1390 train_time:196258ms step_avg:147.67ms step:1340/1390 train_time:196414ms step_avg:147.68ms step:1341/1390 train_time:196567ms step_avg:147.68ms step:1342/1390 train_time:196723ms step_avg:147.69ms step:1343/1390 train_time:196881ms step_avg:147.70ms step:1344/1390 train_time:197039ms step_avg:147.71ms step:1345/1390 train_time:197195ms step_avg:147.71ms step:1346/1390 train_time:197349ms step_avg:147.72ms step:1347/1390 train_time:197505ms step_avg:147.72ms step:1348/1390 train_time:197661ms step_avg:147.73ms step:1349/1390 train_time:197817ms step_avg:147.74ms step:1350/1390 train_time:197971ms step_avg:147.74ms step:1351/1390 train_time:198126ms step_avg:147.75ms step:1352/1390 train_time:198290ms step_avg:147.76ms step:1353/1390 train_time:198448ms step_avg:147.76ms step:1354/1390 train_time:198603ms step_avg:147.77ms step:1355/1390 train_time:198757ms step_avg:147.77ms step:1356/1390 train_time:198911ms step_avg:147.78ms step:1357/1390 train_time:199067ms step_avg:147.79ms step:1358/1390 train_time:199225ms step_avg:147.79ms step:1359/1390 train_time:199378ms step_avg:147.80ms step:1360/1390 train_time:199536ms step_avg:147.80ms step:1361/1390 train_time:199698ms step_avg:147.81ms step:1362/1390 train_time:199856ms step_avg:147.82ms step:1363/1390 train_time:200020ms step_avg:147.83ms step:1364/1390 train_time:200175ms step_avg:147.84ms step:1365/1390 train_time:200327ms step_avg:147.84ms step:1366/1390 train_time:200489ms step_avg:147.85ms step:1367/1390 train_time:200644ms step_avg:147.86ms step:1368/1390 train_time:200802ms step_avg:147.87ms step:1369/1390 train_time:200967ms step_avg:147.88ms step:1370/1390 train_time:201127ms step_avg:147.89ms step:1371/1390 train_time:201282ms step_avg:147.89ms step:1372/1390 train_time:201441ms step_avg:147.90ms step:1373/1390 train_time:201597ms step_avg:147.91ms step:1374/1390 train_time:201759ms step_avg:147.92ms step:1375/1390 train_time:201916ms step_avg:147.92ms step:1375/1390 val_loss:3.2793 train_time:201992ms step_avg:147.98ms step:1376/1390 train_time:202074ms step_avg:147.93ms step:1377/1390 train_time:202235ms step_avg:147.94ms step:1378/1390 train_time:202393ms step_avg:147.95ms step:1379/1390 train_time:202549ms step_avg:147.95ms step:1380/1390 train_time:202704ms step_avg:147.96ms step:1381/1390 train_time:202864ms step_avg:147.97ms step:1382/1390 train_time:203020ms step_avg:147.97ms step:1383/1390 train_time:203174ms step_avg:147.98ms step:1384/1390 train_time:203336ms step_avg:147.99ms step:1385/1390 train_time:203491ms step_avg:147.99ms step:1386/1390 train_time:203649ms step_avg:148.00ms step:1387/1390 train_time:203805ms step_avg:148.01ms step:1388/1390 train_time:203959ms step_avg:148.01ms step:1389/1390 train_time:204113ms step_avg:148.02ms step:1390/1390 train_time:204266ms step_avg:148.02ms step:1390/1390 val_loss:3.2785 train_time:204345ms step_avg:148.08ms peak memory consumption: 31563 MiB