==================================================================================================== import os import sys with open(sys.argv[0]) as f: code = f.read() # read the code of this file ASAP, for logging import uuid import glob import time from dataclasses import dataclass import numpy as np import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist import torch._inductor.config as config from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.attention.flex_attention import flex_attention, create_block_mask flex_attention = torch.compile(flex_attention, dynamic=False) create_block_mask = torch.compile(create_block_mask, dynamic=False) # ----------------------------------------------------------------------------- # Muon optimizer def zeropower_via_svd(G, steps=None): U, S, V = G.svd() return U @ V.T @torch.compile def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7): """ Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at zero even beyond the point where the iteration no longer converges all the way to one everywhere on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model performance at all relative to UV^T, where USV^T = G is the SVD. """ assert len(G.shape) == 2 a, b, c = (3.4445, -4.7750, 2.0315) X = G.bfloat16() X /= (X.norm() + eps) # ensure top singular value <= 1 if G.size(0) > G.size(1): X = X.T for _ in range(steps): A = X @ X.T B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng X = a * X + B @ X if G.size(0) > G.size(1): X = X.T return X zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5) class Muon(torch.optim.Optimizer): """ Muon - MomentUm Orthogonalized by Newton-schulz Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- processing step, in which each 2D parameter's update is replaced with the nearest orthogonal matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has the advantage that it can be stably run in bfloat16 on the GPU. Some warnings: - This optimizer assumes that all parameters passed in are 2D. - It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). - To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions. - We believe it is unlikely to work well for training with small batch size. - We believe it may not work well for finetuning pretrained models, but we haven't tested this. - We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M). Arguments: lr: The learning rate used by the internal SGD. momentum: The momentum used by the internal SGD. nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended) backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5') backend_steps: The number of iteration steps to use in the backend, if it is iterative. """ def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, backend='newtonschulz5', backend_steps=5): defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps) super().__init__(params, defaults) def step(self): for group in self.param_groups: lr = group['lr'] momentum = group['momentum'] zeropower_backend = zeropower_backends[group['backend']] # generate weight updates in distributed fashion total_params = sum(p.numel() for p in group['params']) updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16) curr_idx = 0 for i, p in enumerate(group['params']): # luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']): g = p.grad assert g is not None state = self.state[p] if 'momentum_buffer' not in state: state['momentum_buffer'] = torch.zeros_like(g) buf = state['momentum_buffer'] buf.mul_(momentum).add_(g) if group['nesterov']: g = g.add(buf, alpha=momentum) g = zeropower_backend(g, steps=group['backend_steps']) g *= max(1, g.size(0)/g.size(1))**0.5 updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten() curr_idx += p.numel() # sync updates across devices. we are not memory-constrained so can do this simple deserialization dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM) # deserialize and apply updates curr_idx = 0 for p in group['params']: g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data) p.data.add_(g, alpha=-lr) curr_idx += p.numel() # ----------------------------------------------------------------------------- # PyTorch nn.Module definitions for the GPT-2 model class Rotary(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() self.dim = dim self.base = base self.inv_freq = None self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x): seq_len = x.shape[1] if seq_len != self.seq_len_cached: self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim)) self.seq_len_cached = seq_len t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) self.cos_cached = freqs.cos().bfloat16() self.sin_cached = freqs.sin().bfloat16() return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] def apply_rotary_emb(x, cos, sin): assert x.ndim == 4 # multihead attention d = x.shape[3]//2 x1 = x[..., :d] x2 = x[..., d:] y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat([y1, y2], 3).type_as(x) class CastedLinear(nn.Linear): def forward(self, x): return F.linear(x, self.weight.to(x.dtype)) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.n_head = config.n_head self.n_embd = config.n_embd self.head_dim = self.n_embd // self.n_head assert self.n_embd % self.n_head == 0 self.c_q = CastedLinear(self.n_embd, self.n_embd, bias=False) self.c_k = CastedLinear(self.n_embd, self.n_embd, bias=False) self.c_v = CastedLinear(self.n_embd, self.n_embd, bias=False) # output projection self.c_proj = CastedLinear(self.n_embd, self.n_embd, bias=False) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 self.rotary = Rotary(self.head_dim) self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977 def forward(self, x, v1, block_mask): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_head, self.head_dim) if v1 is None: v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977 cos, sin = self.rotary(q) q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977 q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask) y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side y = self.c_proj(y) return y, v1 class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = CastedLinear(config.n_embd, 4 * config.n_embd, bias=False) self.c_proj = CastedLinear(4 * config.n_embd, config.n_embd, bias=False) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.attn = CausalSelfAttention(config) self.mlp = MLP(config) self.lambdas = nn.Parameter(torch.tensor([1., 0.])) def forward(self, x, v1, x0, block_mask): x = self.lambdas[0] * x + self.lambdas[1] * x0 x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1, block_mask) x = x + x1 x = x + self.mlp(F.rms_norm(x, (x.size(-1),))) return x, v1 # ----------------------------------------------------------------------------- # The main GPT-2 model @dataclass class GPTConfig: vocab_size : int = 50304 n_layer : int = 12 n_head : int = 6 # head dim 128 suggested by @Grad62304977 n_embd : int = 768 class GPT(nn.Module): def __init__(self, config): super().__init__() # U-net design by @brendanh0gan self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder # Add learnable skip connection weights for decoder layers self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers)) self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), )) self.lm_head = CastedLinear(config.n_embd, config.vocab_size, bias=False) self.lm_head.weight.data.zero_() # @Grad62304977 def forward(self, idx, target): docs = (idx == 50256).cumsum(0) def document_causal_mask(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx document_mask = docs[q_idx] == docs[kv_idx] window_mask = q_idx - kv_idx < 1024 return causal_mask & document_mask & window_mask S = len(idx) block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True) # forward the GPT model itself x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd) x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977 x0 = x v1 = None # Store outputs for U-Net skip connections skip_connections = [] # Encoder pass - process only the first half of the blocks for i in range(self.num_encoder_layers): x, v1 = self.transformer.h[i](x, v1, x0, block_mask) skip_connections.append(x) # Decoder pass - process the remaining blocks with weighted skip connections for i in range(self.num_decoder_layers): x = x + self.skip_weights[i] * skip_connections.pop() x, v1 = self.transformer.h[self.num_encoder_layers + i](x, v1, x0, block_mask) x = F.rms_norm(x, (x.size(-1),)) logits = self.lm_head(x) logits = 30 * torch.tanh(logits / 30) # @Grad62304977 logits = logits.float() loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1)) return loss # ----------------------------------------------------------------------------- # Our own simple Distributed Data Loader def _peek_data_shard(filename): # only reads the header, returns header data with open(filename, "rb") as f: # first read the header, which is 256 int32 integers (4 bytes each) header = np.frombuffer(f.read(256*4), dtype=np.int32) if header[0] != 20240520: print("ERROR: magic number mismatch in the data .bin file!") print("---> HINT: Are you passing in a correct file with --input_bin?") print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README") print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try") exit(1) assert header[1] == 1, "unsupported version" ntok = header[2] # number of tokens (claimed) return ntok # for now just return the number of tokens def _load_data_shard(filename): with open(filename, "rb") as f: # first read the header, which is 256 int32 integers (4 bytes each) header = np.frombuffer(f.read(256*4), dtype=np.int32) assert header[0] == 20240520, "magic number mismatch in the data .bin file" assert header[1] == 1, "unsupported version" ntok = header[2] # number of tokens (claimed) # the rest of it are tokens, stored as uint16 tokens = np.frombuffer(f.read(), dtype=np.uint16) assert len(tokens) == ntok, "number of tokens read does not match header?" return tokens class DistributedDataLoader: def __init__(self, filename_pattern, B, T, process_rank, num_processes): self.process_rank = process_rank self.num_processes = num_processes self.B = B self.T = T # glob files that match the pattern self.files = sorted(glob.glob(filename_pattern)) assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}" # load and validate all data shards, count number of tokens in total ntok_total = 0 for fname in self.files: shard_ntok = _peek_data_shard(fname) assert shard_ntok >= num_processes * B * T + 1 ntok_total += int(shard_ntok) self.ntok_total = ntok_total self.reset() def reset(self): self.current_shard = -1 self.advance() def advance(self): # advance to next data shard self.current_shard = (self.current_shard + 1) % len(self.files) self.current_position = self.process_rank * self.B * self.T self.tokens = _load_data_shard(self.files[self.current_shard]) def next_batch(self): batch_size = self.B * self.T * self.num_processes buf = self.tokens[self.current_position:self.current_position+self.B*self.T+1] buf = torch.tensor(buf.astype(np.int32), dtype=torch.long) x = buf[:-1] # inputs y = buf[1:] # targets # advance current position and load next shard if necessary self.current_position += batch_size if self.current_position + batch_size >= len(self.tokens): self.advance() return x.cuda(), y.cuda() # ----------------------------------------------------------------------------- # int main @dataclass class Hyperparameters: # data hyperparams input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on # optimization hyperparams batch_size : int = 8 # batch size, in sequences, across all devices device_batch_size : int = 1 # batch size, in sequences, per device sequence_length : int = 64*1024 # sequence length, in tokens num_iterations : int = 1875 # number of iterations to run warmup_iters : int = 0 warmdown_iters : int = 562 # number of iterations of linear warmup/warmdown for triangular or trapezoidal schedule weight_decay : float = 0 # evaluation and logging hyperparams val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end args = Hyperparameters() # set up DDP (distributed data parallel). torchrun sets this env variable assert torch.cuda.is_available() dist.init_process_group(backend='nccl') ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) ddp_world_size = int(os.environ['WORLD_SIZE']) device = f'cuda:{ddp_local_rank}' torch.cuda.set_device(device) print(f"using device: {device}") master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc. # begin logging logfile = None if master_process: run_id = str(uuid.uuid4()) logdir = 'logs/%s/' % run_id os.makedirs(logdir, exist_ok=True) logfile = 'logs/%s.txt' % run_id # create the log file with open(logfile, "w") as f: # begin the log by printing this file (the Python code) f.write('='*100 + '\n') f.write(code) f.write('='*100 + '\n') def print0(s, logonly=False): if master_process: with open(logfile, "a") as f: if not logonly: print(s) f.write(s+'\n') # log information about the hardware/software environment this is running on # and print the full `nvidia-smi` to file print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:") import subprocess result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) print0(f'{result.stdout}', logonly=True) print0('='*100, logonly=True) # convenience variables B, T = args.device_batch_size, args.sequence_length # calculate the number of steps to take in the val loop. assert args.val_tokens % (B * T * ddp_world_size) == 0 val_steps = args.val_tokens // (B * T * ddp_world_size) # calculate the steps of gradient accumulation required to attain the desired global batch size. assert args.batch_size % (B * ddp_world_size) == 0 train_accumulation_steps = args.batch_size // (B * ddp_world_size) # load tokens train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size) val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size) print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files") print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files") print0('='*100, logonly=True) x, y = train_loader.next_batch() # there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977. # this originates from Karpathy's experiments. num_vocab = 50304 model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768)) model = model.cuda().bfloat16() for m in model.modules(): if isinstance(m, CastedLinear): m.float() if hasattr(config, "coordinate_descent_tuning"): config.coordinate_descent_tuning = True # suggested by @Chillee model = torch.compile(model) # here we wrap model into DDP container model = DDP(model, device_ids=[ddp_local_rank]) raw_model = model.module # always contains the "raw" unwrapped model # CUDNN attention is ~4ms faster than Flash, but doesn't get selected by default in PyTorch 2.5.1 from torch.backends.cuda import enable_cudnn_sdp, enable_flash_sdp, enable_math_sdp, enable_mem_efficient_sdp enable_cudnn_sdp(True) enable_flash_sdp(False) enable_mem_efficient_sdp(False) enable_math_sdp(False) # init the optimizer(s) optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight], lr=0.6, betas=(0.9, 0.95), fused=True) optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.9, 0.95), fused=True) params = list(raw_model.transformer.h.parameters()) matrix_params = [p for p in params if p.ndim == 2] scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights] optimizer3 = Muon(matrix_params, lr=0.04, momentum=0.95) optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.9, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned optimizers = [optimizer1, optimizer2, optimizer3, optimizer4] # learning rate decay scheduler (linear warmup and warmdown) def get_lr(it): assert it <= args.num_iterations # 1) linear warmup for warmup_iters steps if it < args.warmup_iters: return (it+1) / args.warmup_iters # 2) constant lr for a while elif it < args.num_iterations - args.warmdown_iters: return 1.0 # 3) linear warmdown else: decay_ratio = (args.num_iterations - it) / args.warmdown_iters return decay_ratio schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers] # Start training loop training_time_ms = 0 # start the clock torch.cuda.synchronize() t0 = time.time() # begin training for step in range(args.num_iterations + 1): last_step = (step == args.num_iterations) # This effectively ignores timing first 10 steps, which are slower for weird reasons. # Alternately, and slightly more correctly in terms of benchmarking, we could do 10 # steps with dummy data first, and then re-initialize the model and reset the loader. if step == 10: training_time_ms = 0 t0 = time.time() timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val # once in a while evaluate the validation dataset if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.time() - t0) # run validation batches model.eval() val_loader.reset() val_loss = 0.0 for _ in range(val_steps): with torch.no_grad(): x_val, y_val = val_loader.next_batch() val_loss += model(x_val, y_val) dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) val_loss /= val_steps # log val loss to console and to logfile print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms') # start the clock again torch.cuda.synchronize() t0 = time.time() if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.time() - t0) # save the state of the training process log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step)) # start the clock again torch.cuda.synchronize() t0 = time.time() # bit confusing: we want to make sure to eval on 0th iteration # but also after the very last iteration. so we loop for step <= num_iterations # instead of just < num_iterations (one extra due to <=), only to do # the validation/sampling one last time, and then we break right here as we're done. if last_step: break # --------------- TRAINING SECTION BEGIN ----------------- model.train() for i in range(1, train_accumulation_steps+1): # forward pass loss = model(x, y) train_loss = loss.detach() # advance the dataset for the next batch x, y = train_loader.next_batch() # backward pass if i < train_accumulation_steps: with model.no_sync(): # there's no need to sync gradients every accumulation step loss.backward() else: loss.backward() # just sync on the last step for p in model.parameters(): p.grad /= train_accumulation_steps # momentum warmup for Muon frac = min(step/500, 1) optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95 # step the optimizers and schedulers for opt, sched in zip(optimizers, schedulers): opt.step() sched.step() # null the gradients model.zero_grad(set_to_none=True) # --------------- TRAINING SECTION END ------------------- # everything that follows now is just diagnostics, prints, logging, etc. #dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower approx_time = training_time_ms + 1000 * (time.time() - t0) print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms") if master_process: print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB") # ------------------------------------------------------------------------- # clean up nice dist.destroy_process_group() ==================================================================================================== Running pytorch 2.6.0.dev20241119+cu124 compiled for CUDA 12.4 nvidia-smi: Wed Nov 20 01:46:38 2024 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA H100 80GB HBM3 Off | 00000000:18:00.0 Off | 0 | | N/A 32C P0 98W / 700W | 4MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 1 NVIDIA H100 80GB HBM3 Off | 00000000:2A:00.0 Off | 0 | | N/A 32C P0 87W / 700W | 4MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 2 NVIDIA H100 80GB HBM3 Off | 00000000:3A:00.0 Off | 0 | | N/A 34C P0 124W / 700W | 22MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 3 NVIDIA H100 80GB HBM3 Off | 00000000:5D:00.0 Off | 0 | | N/A 32C P0 135W / 700W | 23MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 4 NVIDIA H100 80GB HBM3 Off | 00000000:9A:00.0 Off | 0 | | N/A 33C P0 140W / 700W | 23MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 5 NVIDIA H100 80GB HBM3 Off | 00000000:AB:00.0 Off | 0 | | N/A 36C P0 140W / 700W | 22MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 6 NVIDIA H100 80GB HBM3 Off | 00000000:BA:00.0 Off | 0 | | N/A 34C P0 140W / 700W | 22MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 7 NVIDIA H100 80GB HBM3 Off | 00000000:DB:00.0 Off | 0 | | N/A 32C P0 101W / 700W | 4MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 2 N/A N/A 132603 C /usr/bin/python3 0MiB | | 3 N/A N/A 132604 C /usr/bin/python3 0MiB | | 4 N/A N/A 132605 C /usr/bin/python3 0MiB | | 5 N/A N/A 132606 C /usr/bin/python3 0MiB | | 6 N/A N/A 132607 C /usr/bin/python3 0MiB | +-----------------------------------------------------------------------------------------+ ==================================================================================================== Training DataLoader: total number of tokens: 1800000000 across 18 files Validation DataLoader: total number of tokens: 100000000 across 1 files ==================================================================================================== step:0/1875 val_loss:10.8258 train_time:0ms step_avg:nanms step:1/1875 train_loss:10.8258 train_time:44119ms step_avg:nanms step:2/1875 train_loss:10.0758 train_time:44237ms step_avg:nanms step:3/1875 train_loss:8.4294 train_time:44392ms step_avg:nanms step:4/1875 train_loss:7.5322 train_time:44550ms step_avg:nanms step:5/1875 train_loss:7.4493 train_time:44711ms step_avg:nanms step:6/1875 train_loss:7.0651 train_time:44869ms step_avg:nanms step:7/1875 train_loss:7.2761 train_time:45030ms step_avg:nanms step:8/1875 train_loss:6.8916 train_time:45190ms step_avg:nanms step:9/1875 train_loss:6.7143 train_time:45353ms step_avg:nanms step:10/1875 train_loss:6.5916 train_time:45513ms step_avg:nanms step:11/1875 train_loss:6.5317 train_time:117ms step_avg:nanms step:12/1875 train_loss:6.4129 train_time:280ms step_avg:nanms step:13/1875 train_loss:6.3471 train_time:439ms step_avg:146.47ms step:14/1875 train_loss:6.3346 train_time:602ms step_avg:150.62ms step:15/1875 train_loss:6.2908 train_time:764ms step_avg:152.72ms step:16/1875 train_loss:6.2607 train_time:921ms step_avg:153.56ms step:17/1875 train_loss:6.3145 train_time:1083ms step_avg:154.75ms step:18/1875 train_loss:6.1358 train_time:1244ms step_avg:155.56ms step:19/1875 train_loss:6.1409 train_time:1406ms step_avg:156.21ms step:20/1875 train_loss:5.8620 train_time:1566ms step_avg:156.61ms step:21/1875 train_loss:6.1426 train_time:1723ms step_avg:156.65ms step:22/1875 train_loss:6.3416 train_time:1886ms step_avg:157.15ms step:23/1875 train_loss:6.0199 train_time:2045ms step_avg:157.34ms step:24/1875 train_loss:6.2109 train_time:2207ms step_avg:157.63ms step:25/1875 train_loss:5.8884 train_time:2366ms step_avg:157.70ms step:26/1875 train_loss:5.7923 train_time:2526ms step_avg:157.88ms step:27/1875 train_loss:6.0234 train_time:2687ms step_avg:158.08ms step:28/1875 train_loss:5.6527 train_time:2846ms step_avg:158.10ms step:29/1875 train_loss:5.9082 train_time:3004ms step_avg:158.09ms step:30/1875 train_loss:5.7131 train_time:3164ms step_avg:158.18ms step:31/1875 train_loss:5.6763 train_time:3324ms step_avg:158.28ms step:32/1875 train_loss:5.5363 train_time:3484ms step_avg:158.38ms step:33/1875 train_loss:5.8379 train_time:3645ms step_avg:158.49ms step:34/1875 train_loss:5.7220 train_time:3805ms step_avg:158.52ms step:35/1875 train_loss:5.8748 train_time:3965ms step_avg:158.61ms step:36/1875 train_loss:5.8047 train_time:4124ms step_avg:158.61ms step:37/1875 train_loss:5.6777 train_time:4283ms step_avg:158.62ms step:38/1875 train_loss:5.5615 train_time:4442ms step_avg:158.65ms step:39/1875 train_loss:5.5995 train_time:4604ms step_avg:158.75ms step:40/1875 train_loss:5.4891 train_time:4764ms step_avg:158.81ms step:41/1875 train_loss:5.4727 train_time:4924ms step_avg:158.83ms step:42/1875 train_loss:5.3851 train_time:5084ms step_avg:158.88ms step:43/1875 train_loss:5.4895 train_time:5243ms step_avg:158.86ms step:44/1875 train_loss:5.4494 train_time:5404ms step_avg:158.93ms step:45/1875 train_loss:5.5873 train_time:5565ms step_avg:158.99ms step:46/1875 train_loss:5.4017 train_time:5726ms step_avg:159.05ms step:47/1875 train_loss:5.2713 train_time:5886ms step_avg:159.07ms step:48/1875 train_loss:5.4310 train_time:6046ms step_avg:159.12ms step:49/1875 train_loss:5.3474 train_time:6207ms step_avg:159.16ms step:50/1875 train_loss:5.4620 train_time:6366ms step_avg:159.15ms step:51/1875 train_loss:5.3479 train_time:6525ms step_avg:159.16ms step:52/1875 train_loss:5.2030 train_time:6688ms step_avg:159.23ms step:53/1875 train_loss:5.3397 train_time:6848ms step_avg:159.25ms step:54/1875 train_loss:5.2069 train_time:7004ms step_avg:159.19ms step:55/1875 train_loss:5.5854 train_time:7164ms step_avg:159.19ms step:56/1875 train_loss:5.1997 train_time:7324ms step_avg:159.23ms step:57/1875 train_loss:5.0728 train_time:7484ms step_avg:159.23ms step:58/1875 train_loss:5.1976 train_time:7643ms step_avg:159.22ms step:59/1875 train_loss:5.1959 train_time:7802ms step_avg:159.23ms step:60/1875 train_loss:5.3275 train_time:7966ms step_avg:159.33ms step:61/1875 train_loss:5.0447 train_time:8124ms step_avg:159.30ms step:62/1875 train_loss:5.1545 train_time:8284ms step_avg:159.30ms step:63/1875 train_loss:5.1411 train_time:8443ms step_avg:159.31ms step:64/1875 train_loss:4.8026 train_time:8605ms step_avg:159.35ms step:65/1875 train_loss:4.9681 train_time:8764ms step_avg:159.35ms step:66/1875 train_loss:5.0964 train_time:8922ms step_avg:159.33ms step:67/1875 train_loss:4.9890 train_time:9084ms step_avg:159.37ms step:68/1875 train_loss:5.2498 train_time:9244ms step_avg:159.39ms step:69/1875 train_loss:4.8936 train_time:9407ms step_avg:159.44ms step:70/1875 train_loss:4.9597 train_time:9568ms step_avg:159.46ms step:71/1875 train_loss:5.1391 train_time:9725ms step_avg:159.43ms step:72/1875 train_loss:5.0718 train_time:9888ms step_avg:159.49ms step:73/1875 train_loss:4.9480 train_time:10050ms step_avg:159.52ms step:74/1875 train_loss:5.0746 train_time:10210ms step_avg:159.53ms step:75/1875 train_loss:5.0536 train_time:10369ms step_avg:159.52ms step:76/1875 train_loss:4.9853 train_time:10528ms step_avg:159.51ms step:77/1875 train_loss:5.0925 train_time:10691ms step_avg:159.56ms step:78/1875 train_loss:5.2542 train_time:10853ms step_avg:159.60ms step:79/1875 train_loss:4.9633 train_time:11012ms step_avg:159.60ms step:80/1875 train_loss:5.0276 train_time:11174ms step_avg:159.63ms step:81/1875 train_loss:4.8145 train_time:11334ms step_avg:159.64ms step:82/1875 train_loss:4.9795 train_time:11495ms step_avg:159.65ms step:83/1875 train_loss:4.9354 train_time:11657ms step_avg:159.68ms step:84/1875 train_loss:4.9327 train_time:11818ms step_avg:159.70ms step:85/1875 train_loss:4.7894 train_time:11980ms step_avg:159.73ms step:86/1875 train_loss:4.9939 train_time:12138ms step_avg:159.71ms step:87/1875 train_loss:4.9101 train_time:12297ms step_avg:159.70ms step:88/1875 train_loss:4.9417 train_time:12459ms step_avg:159.73ms step:89/1875 train_loss:4.8829 train_time:12618ms step_avg:159.72ms step:90/1875 train_loss:4.8210 train_time:12778ms step_avg:159.73ms step:91/1875 train_loss:4.8064 train_time:12940ms step_avg:159.76ms step:92/1875 train_loss:4.9475 train_time:13101ms step_avg:159.77ms step:93/1875 train_loss:4.7706 train_time:13263ms step_avg:159.80ms step:94/1875 train_loss:4.8008 train_time:13423ms step_avg:159.80ms step:95/1875 train_loss:4.8379 train_time:13585ms step_avg:159.82ms step:96/1875 train_loss:4.7420 train_time:13742ms step_avg:159.79ms step:97/1875 train_loss:4.7938 train_time:13903ms step_avg:159.81ms step:98/1875 train_loss:4.7198 train_time:14064ms step_avg:159.82ms step:99/1875 train_loss:4.8135 train_time:14223ms step_avg:159.81ms step:100/1875 train_loss:4.8217 train_time:14386ms step_avg:159.84ms step:101/1875 train_loss:4.6729 train_time:14550ms step_avg:159.89ms step:102/1875 train_loss:4.8397 train_time:14710ms step_avg:159.89ms step:103/1875 train_loss:4.7348 train_time:14870ms step_avg:159.89ms step:104/1875 train_loss:4.6621 train_time:15032ms step_avg:159.92ms step:105/1875 train_loss:4.6692 train_time:15193ms step_avg:159.93ms step:106/1875 train_loss:4.7522 train_time:15354ms step_avg:159.94ms step:107/1875 train_loss:4.6456 train_time:15514ms step_avg:159.94ms step:108/1875 train_loss:4.4805 train_time:15677ms step_avg:159.97ms step:109/1875 train_loss:4.6062 train_time:15837ms step_avg:159.97ms step:110/1875 train_loss:4.5900 train_time:15999ms step_avg:159.99ms step:111/1875 train_loss:4.5267 train_time:16160ms step_avg:160.00ms step:112/1875 train_loss:4.6676 train_time:16320ms step_avg:160.00ms step:113/1875 train_loss:4.5713 train_time:16479ms step_avg:159.99ms step:114/1875 train_loss:4.4449 train_time:16638ms step_avg:159.98ms step:115/1875 train_loss:4.5921 train_time:16796ms step_avg:159.96ms step:116/1875 train_loss:4.5457 train_time:16959ms step_avg:159.99ms step:117/1875 train_loss:4.4594 train_time:17118ms step_avg:159.98ms step:118/1875 train_loss:4.6663 train_time:17281ms step_avg:160.01ms step:119/1875 train_loss:4.5182 train_time:17440ms step_avg:160.00ms step:120/1875 train_loss:4.3822 train_time:17597ms step_avg:159.97ms step:121/1875 train_loss:4.3751 train_time:17755ms step_avg:159.96ms step:122/1875 train_loss:4.5364 train_time:17914ms step_avg:159.95ms step:123/1875 train_loss:4.3327 train_time:18076ms step_avg:159.97ms step:124/1875 train_loss:4.6241 train_time:18236ms step_avg:159.97ms step:125/1875 train_loss:4.5047 train_time:18397ms step_avg:159.97ms step:125/1875 val_loss:4.4503 train_time:18440ms step_avg:160.35ms step:126/1875 train_loss:4.4473 train_time:18560ms step_avg:160.00ms step:127/1875 train_loss:4.4887 train_time:18718ms step_avg:159.99ms step:128/1875 train_loss:4.4504 train_time:18877ms step_avg:159.98ms step:129/1875 train_loss:4.7236 train_time:19037ms step_avg:159.98ms step:130/1875 train_loss:4.3831 train_time:19197ms step_avg:159.98ms step:131/1875 train_loss:4.4409 train_time:19357ms step_avg:159.98ms step:132/1875 train_loss:4.3561 train_time:19517ms step_avg:159.98ms step:133/1875 train_loss:4.4980 train_time:19676ms step_avg:159.97ms step:134/1875 train_loss:4.3012 train_time:19835ms step_avg:159.96ms step:135/1875 train_loss:4.4859 train_time:19995ms step_avg:159.96ms step:136/1875 train_loss:4.2413 train_time:20155ms step_avg:159.96ms step:137/1875 train_loss:4.4178 train_time:20313ms step_avg:159.95ms step:138/1875 train_loss:4.3323 train_time:20474ms step_avg:159.95ms step:139/1875 train_loss:4.4259 train_time:20633ms step_avg:159.94ms step:140/1875 train_loss:4.4872 train_time:20792ms step_avg:159.94ms step:141/1875 train_loss:4.3385 train_time:20952ms step_avg:159.94ms step:142/1875 train_loss:4.3226 train_time:21114ms step_avg:159.95ms step:143/1875 train_loss:4.2695 train_time:21276ms step_avg:159.97ms step:144/1875 train_loss:4.3888 train_time:21435ms step_avg:159.96ms step:145/1875 train_loss:4.3287 train_time:21593ms step_avg:159.95ms step:146/1875 train_loss:4.2037 train_time:21754ms step_avg:159.95ms step:147/1875 train_loss:4.3365 train_time:21913ms step_avg:159.95ms step:148/1875 train_loss:4.4025 train_time:22073ms step_avg:159.95ms step:149/1875 train_loss:4.3019 train_time:22236ms step_avg:159.97ms step:150/1875 train_loss:4.4483 train_time:22395ms step_avg:159.97ms step:151/1875 train_loss:4.3018 train_time:22556ms step_avg:159.98ms step:152/1875 train_loss:4.3062 train_time:22717ms step_avg:159.98ms step:153/1875 train_loss:4.3713 train_time:22880ms step_avg:160.00ms step:154/1875 train_loss:4.3762 train_time:23040ms step_avg:160.00ms step:155/1875 train_loss:4.3005 train_time:23199ms step_avg:159.99ms step:156/1875 train_loss:4.3562 train_time:23359ms step_avg:159.99ms step:157/1875 train_loss:4.4090 train_time:23519ms step_avg:159.99ms step:158/1875 train_loss:4.2503 train_time:23678ms step_avg:159.99ms step:159/1875 train_loss:4.3289 train_time:23835ms step_avg:159.97ms step:160/1875 train_loss:4.1163 train_time:23995ms step_avg:159.97ms step:161/1875 train_loss:4.3622 train_time:24157ms step_avg:159.98ms step:162/1875 train_loss:4.3669 train_time:24315ms step_avg:159.97ms step:163/1875 train_loss:4.3331 train_time:24473ms step_avg:159.96ms step:164/1875 train_loss:4.2126 train_time:24634ms step_avg:159.96ms step:165/1875 train_loss:4.2762 train_time:24794ms step_avg:159.96ms step:166/1875 train_loss:4.3385 train_time:24954ms step_avg:159.96ms step:167/1875 train_loss:4.2001 train_time:25113ms step_avg:159.96ms step:168/1875 train_loss:4.2551 train_time:25274ms step_avg:159.96ms step:169/1875 train_loss:4.1533 train_time:25434ms step_avg:159.96ms step:170/1875 train_loss:4.0624 train_time:25598ms step_avg:159.99ms step:171/1875 train_loss:4.1996 train_time:25759ms step_avg:159.99ms step:172/1875 train_loss:4.2320 train_time:25919ms step_avg:159.99ms step:173/1875 train_loss:4.2650 train_time:26078ms step_avg:159.99ms step:174/1875 train_loss:4.4415 train_time:26235ms step_avg:159.97ms step:175/1875 train_loss:4.2494 train_time:26395ms step_avg:159.97ms step:176/1875 train_loss:4.1126 train_time:26553ms step_avg:159.96ms step:177/1875 train_loss:4.0732 train_time:26714ms step_avg:159.96ms step:178/1875 train_loss:4.1843 train_time:26874ms step_avg:159.96ms step:179/1875 train_loss:4.1358 train_time:27034ms step_avg:159.96ms step:180/1875 train_loss:4.1226 train_time:27195ms step_avg:159.97ms step:181/1875 train_loss:4.3012 train_time:27353ms step_avg:159.96ms step:182/1875 train_loss:4.1772 train_time:27509ms step_avg:159.94ms step:183/1875 train_loss:4.1506 train_time:27671ms step_avg:159.95ms step:184/1875 train_loss:4.1442 train_time:27830ms step_avg:159.94ms step:185/1875 train_loss:4.2055 train_time:27990ms step_avg:159.94ms step:186/1875 train_loss:4.1903 train_time:28152ms step_avg:159.95ms step:187/1875 train_loss:4.2145 train_time:28312ms step_avg:159.96ms step:188/1875 train_loss:4.1650 train_time:28640ms step_avg:160.90ms step:189/1875 train_loss:4.1067 train_time:28983ms step_avg:161.92ms step:190/1875 train_loss:4.2114 train_time:29144ms step_avg:161.91ms step:191/1875 train_loss:4.0851 train_time:29302ms step_avg:161.89ms step:192/1875 train_loss:4.0420 train_time:29462ms step_avg:161.88ms step:193/1875 train_loss:4.2586 train_time:29621ms step_avg:161.87ms step:194/1875 train_loss:4.1701 train_time:29785ms step_avg:161.88ms step:195/1875 train_loss:4.3681 train_time:29945ms step_avg:161.86ms step:196/1875 train_loss:4.1969 train_time:30107ms step_avg:161.86ms step:197/1875 train_loss:4.0340 train_time:30272ms step_avg:161.88ms step:198/1875 train_loss:4.1929 train_time:30431ms step_avg:161.87ms step:199/1875 train_loss:4.0451 train_time:30589ms step_avg:161.85ms step:200/1875 train_loss:4.1304 train_time:30747ms step_avg:161.83ms step:201/1875 train_loss:4.0007 train_time:30908ms step_avg:161.82ms step:202/1875 train_loss:4.2474 train_time:31068ms step_avg:161.81ms step:203/1875 train_loss:4.0673 train_time:31230ms step_avg:161.81ms step:204/1875 train_loss:4.2037 train_time:31390ms step_avg:161.81ms step:205/1875 train_loss:4.2456 train_time:31551ms step_avg:161.80ms step:206/1875 train_loss:3.9538 train_time:31711ms step_avg:161.79ms step:207/1875 train_loss:4.1035 train_time:31869ms step_avg:161.77ms step:208/1875 train_loss:4.0906 train_time:32029ms step_avg:161.76ms step:209/1875 train_loss:4.2543 train_time:32189ms step_avg:161.76ms step:210/1875 train_loss:4.1633 train_time:32352ms step_avg:161.76ms step:211/1875 train_loss:4.0585 train_time:32510ms step_avg:161.74ms step:212/1875 train_loss:4.0196 train_time:32674ms step_avg:161.75ms step:213/1875 train_loss:4.0575 train_time:32833ms step_avg:161.74ms step:214/1875 train_loss:4.1230 train_time:32995ms step_avg:161.74ms step:215/1875 train_loss:3.9039 train_time:33158ms step_avg:161.75ms step:216/1875 train_loss:3.9947 train_time:33315ms step_avg:161.72ms step:217/1875 train_loss:3.9977 train_time:33474ms step_avg:161.71ms step:218/1875 train_loss:4.0838 train_time:33632ms step_avg:161.69ms step:219/1875 train_loss:4.0801 train_time:33791ms step_avg:161.68ms step:220/1875 train_loss:4.0920 train_time:33951ms step_avg:161.67ms step:221/1875 train_loss:4.0998 train_time:34112ms step_avg:161.67ms step:222/1875 train_loss:3.9890 train_time:34271ms step_avg:161.66ms step:223/1875 train_loss:3.9518 train_time:34434ms step_avg:161.66ms step:224/1875 train_loss:4.3006 train_time:34593ms step_avg:161.65ms step:225/1875 train_loss:3.9050 train_time:34753ms step_avg:161.64ms step:226/1875 train_loss:3.9994 train_time:34912ms step_avg:161.63ms step:227/1875 train_loss:3.9908 train_time:35071ms step_avg:161.62ms step:228/1875 train_loss:4.1524 train_time:35230ms step_avg:161.61ms step:229/1875 train_loss:3.9333 train_time:35393ms step_avg:161.61ms step:230/1875 train_loss:4.0589 train_time:35551ms step_avg:161.60ms step:231/1875 train_loss:3.8981 train_time:35712ms step_avg:161.59ms step:232/1875 train_loss:3.9689 train_time:35872ms step_avg:161.58ms step:233/1875 train_loss:4.0835 train_time:36031ms step_avg:161.57ms step:234/1875 train_loss:4.0297 train_time:36192ms step_avg:161.57ms step:235/1875 train_loss:3.8578 train_time:36357ms step_avg:161.59ms step:236/1875 train_loss:4.0570 train_time:36516ms step_avg:161.58ms step:237/1875 train_loss:4.0918 train_time:36676ms step_avg:161.57ms step:238/1875 train_loss:3.9303 train_time:36838ms step_avg:161.57ms step:239/1875 train_loss:4.0550 train_time:36997ms step_avg:161.56ms step:240/1875 train_loss:4.1096 train_time:37158ms step_avg:161.56ms step:241/1875 train_loss:3.9621 train_time:37318ms step_avg:161.55ms step:242/1875 train_loss:4.1379 train_time:37480ms step_avg:161.55ms step:243/1875 train_loss:4.0265 train_time:37637ms step_avg:161.53ms step:244/1875 train_loss:4.0760 train_time:37797ms step_avg:161.53ms step:245/1875 train_loss:4.1566 train_time:37956ms step_avg:161.51ms step:246/1875 train_loss:4.0749 train_time:38116ms step_avg:161.51ms step:247/1875 train_loss:4.0183 train_time:38275ms step_avg:161.50ms step:248/1875 train_loss:4.0990 train_time:38435ms step_avg:161.49ms step:249/1875 train_loss:3.9275 train_time:38591ms step_avg:161.47ms step:250/1875 train_loss:3.9740 train_time:38751ms step_avg:161.46ms step:250/1875 val_loss:4.0085 train_time:38795ms step_avg:161.65ms step:251/1875 train_loss:4.0765 train_time:38914ms step_avg:161.47ms step:252/1875 train_loss:4.1525 train_time:39078ms step_avg:161.48ms step:253/1875 train_loss:3.9337 train_time:39238ms step_avg:161.47ms step:254/1875 train_loss:3.8670 train_time:39396ms step_avg:161.46ms step:255/1875 train_loss:4.0670 train_time:39554ms step_avg:161.45ms step:256/1875 train_loss:3.9666 train_time:39715ms step_avg:161.44ms step:257/1875 train_loss:3.9917 train_time:39876ms step_avg:161.44ms step:258/1875 train_loss:3.9918 train_time:40038ms step_avg:161.44ms step:259/1875 train_loss:4.0396 train_time:40199ms step_avg:161.44ms step:260/1875 train_loss:4.0583 train_time:40362ms step_avg:161.45ms step:261/1875 train_loss:4.0236 train_time:40525ms step_avg:161.45ms step:262/1875 train_loss:4.0029 train_time:40685ms step_avg:161.45ms step:263/1875 train_loss:3.9158 train_time:40844ms step_avg:161.44ms step:264/1875 train_loss:3.9981 train_time:41004ms step_avg:161.43ms step:265/1875 train_loss:3.8777 train_time:41165ms step_avg:161.43ms step:266/1875 train_loss:3.9332 train_time:41323ms step_avg:161.42ms step:267/1875 train_loss:3.9261 train_time:41484ms step_avg:161.42ms step:268/1875 train_loss:3.9713 train_time:41644ms step_avg:161.41ms step:269/1875 train_loss:3.8621 train_time:41802ms step_avg:161.40ms step:270/1875 train_loss:4.0941 train_time:41964ms step_avg:161.40ms step:271/1875 train_loss:3.9774 train_time:42123ms step_avg:161.39ms step:272/1875 train_loss:3.9249 train_time:42284ms step_avg:161.39ms step:273/1875 train_loss:3.9640 train_time:42441ms step_avg:161.37ms step:274/1875 train_loss:4.0423 train_time:42600ms step_avg:161.36ms step:275/1875 train_loss:4.0633 train_time:42762ms step_avg:161.36ms step:276/1875 train_loss:4.2091 train_time:42924ms step_avg:161.37ms step:277/1875 train_loss:4.0394 train_time:43083ms step_avg:161.36ms step:278/1875 train_loss:4.0775 train_time:43243ms step_avg:161.36ms step:279/1875 train_loss:3.9922 train_time:43402ms step_avg:161.35ms step:280/1875 train_loss:4.1856 train_time:43568ms step_avg:161.36ms step:281/1875 train_loss:3.9626 train_time:43728ms step_avg:161.36ms step:282/1875 train_loss:3.9188 train_time:43890ms step_avg:161.36ms step:283/1875 train_loss:3.9237 train_time:44048ms step_avg:161.35ms step:284/1875 train_loss:4.0476 train_time:44208ms step_avg:161.34ms step:285/1875 train_loss:4.0622 train_time:44367ms step_avg:161.34ms step:286/1875 train_loss:4.0891 train_time:44526ms step_avg:161.33ms step:287/1875 train_loss:3.9121 train_time:44686ms step_avg:161.32ms step:288/1875 train_loss:4.0249 train_time:44846ms step_avg:161.32ms step:289/1875 train_loss:3.8604 train_time:45006ms step_avg:161.31ms step:290/1875 train_loss:3.8471 train_time:45168ms step_avg:161.31ms step:291/1875 train_loss:3.9025 train_time:45328ms step_avg:161.31ms step:292/1875 train_loss:3.8669 train_time:45486ms step_avg:161.30ms step:293/1875 train_loss:3.9132 train_time:45644ms step_avg:161.29ms step:294/1875 train_loss:3.9478 train_time:45804ms step_avg:161.28ms step:295/1875 train_loss:3.8508 train_time:45963ms step_avg:161.27ms step:296/1875 train_loss:3.8829 train_time:46124ms step_avg:161.27ms step:297/1875 train_loss:3.8676 train_time:46284ms step_avg:161.27ms step:298/1875 train_loss:3.9665 train_time:46442ms step_avg:161.26ms step:299/1875 train_loss:3.8305 train_time:46601ms step_avg:161.25ms step:300/1875 train_loss:3.9489 train_time:46763ms step_avg:161.25ms step:301/1875 train_loss:3.9694 train_time:46921ms step_avg:161.24ms step:302/1875 train_loss:3.9452 train_time:47079ms step_avg:161.23ms step:303/1875 train_loss:3.9834 train_time:47238ms step_avg:161.22ms step:304/1875 train_loss:3.9644 train_time:47397ms step_avg:161.21ms step:305/1875 train_loss:4.4528 train_time:47558ms step_avg:161.21ms step:306/1875 train_loss:3.9506 train_time:47718ms step_avg:161.21ms step:307/1875 train_loss:3.8507 train_time:47881ms step_avg:161.22ms step:308/1875 train_loss:3.9811 train_time:48040ms step_avg:161.21ms step:309/1875 train_loss:3.8598 train_time:48199ms step_avg:161.20ms step:310/1875 train_loss:4.0851 train_time:48358ms step_avg:161.19ms step:311/1875 train_loss:3.9085 train_time:48518ms step_avg:161.19ms step:312/1875 train_loss:3.8568 train_time:48678ms step_avg:161.18ms step:313/1875 train_loss:3.9469 train_time:48841ms step_avg:161.19ms step:314/1875 train_loss:4.0746 train_time:49003ms step_avg:161.19ms step:315/1875 train_loss:3.9451 train_time:49161ms step_avg:161.19ms step:316/1875 train_loss:3.7827 train_time:49321ms step_avg:161.18ms step:317/1875 train_loss:3.8728 train_time:49484ms step_avg:161.19ms step:318/1875 train_loss:3.9361 train_time:49643ms step_avg:161.18ms step:319/1875 train_loss:3.9047 train_time:49803ms step_avg:161.17ms step:320/1875 train_loss:4.0181 train_time:49963ms step_avg:161.17ms step:321/1875 train_loss:3.9601 train_time:50122ms step_avg:161.16ms step:322/1875 train_loss:3.9283 train_time:50283ms step_avg:161.16ms step:323/1875 train_loss:4.0013 train_time:50442ms step_avg:161.16ms step:324/1875 train_loss:3.9573 train_time:50601ms step_avg:161.15ms step:325/1875 train_loss:4.0273 train_time:50760ms step_avg:161.14ms step:326/1875 train_loss:3.8861 train_time:50921ms step_avg:161.14ms step:327/1875 train_loss:4.3943 train_time:51085ms step_avg:161.15ms step:328/1875 train_loss:4.0758 train_time:51250ms step_avg:161.16ms step:329/1875 train_loss:3.7939 train_time:51415ms step_avg:161.17ms step:330/1875 train_loss:3.7252 train_time:51578ms step_avg:161.18ms step:331/1875 train_loss:3.9805 train_time:51737ms step_avg:161.17ms step:332/1875 train_loss:3.9062 train_time:51896ms step_avg:161.17ms step:333/1875 train_loss:3.8704 train_time:52054ms step_avg:161.16ms step:334/1875 train_loss:3.8532 train_time:52213ms step_avg:161.15ms step:335/1875 train_loss:4.0223 train_time:52373ms step_avg:161.15ms step:336/1875 train_loss:3.9662 train_time:52534ms step_avg:161.15ms step:337/1875 train_loss:4.3853 train_time:52698ms step_avg:161.16ms step:338/1875 train_loss:3.9641 train_time:52860ms step_avg:161.16ms step:339/1875 train_loss:3.8555 train_time:53022ms step_avg:161.16ms step:340/1875 train_loss:3.9390 train_time:53183ms step_avg:161.16ms step:341/1875 train_loss:3.8614 train_time:53342ms step_avg:161.15ms step:342/1875 train_loss:3.8214 train_time:53500ms step_avg:161.15ms step:343/1875 train_loss:3.8310 train_time:53662ms step_avg:161.15ms step:344/1875 train_loss:4.0111 train_time:53820ms step_avg:161.14ms step:345/1875 train_loss:3.8253 train_time:53985ms step_avg:161.15ms step:346/1875 train_loss:3.7720 train_time:54144ms step_avg:161.14ms step:347/1875 train_loss:3.7855 train_time:54304ms step_avg:161.14ms step:348/1875 train_loss:3.8604 train_time:54465ms step_avg:161.14ms step:349/1875 train_loss:3.8352 train_time:54624ms step_avg:161.13ms step:350/1875 train_loss:3.5736 train_time:54785ms step_avg:161.13ms step:351/1875 train_loss:3.8376 train_time:54945ms step_avg:161.13ms step:352/1875 train_loss:4.1939 train_time:55104ms step_avg:161.12ms step:353/1875 train_loss:3.6547 train_time:55264ms step_avg:161.12ms step:354/1875 train_loss:3.9517 train_time:55421ms step_avg:161.11ms step:355/1875 train_loss:3.7900 train_time:55584ms step_avg:161.11ms step:356/1875 train_loss:3.8906 train_time:55742ms step_avg:161.11ms step:357/1875 train_loss:3.7757 train_time:55904ms step_avg:161.11ms step:358/1875 train_loss:3.8688 train_time:56066ms step_avg:161.11ms step:359/1875 train_loss:3.7501 train_time:56228ms step_avg:161.11ms step:360/1875 train_loss:3.4131 train_time:56391ms step_avg:161.12ms step:361/1875 train_loss:4.0185 train_time:56551ms step_avg:161.11ms step:362/1875 train_loss:3.9016 train_time:56708ms step_avg:161.10ms step:363/1875 train_loss:3.8534 train_time:56866ms step_avg:161.09ms step:364/1875 train_loss:3.7429 train_time:57025ms step_avg:161.09ms step:365/1875 train_loss:3.9176 train_time:57188ms step_avg:161.09ms step:366/1875 train_loss:3.8784 train_time:57349ms step_avg:161.09ms step:367/1875 train_loss:3.8708 train_time:57508ms step_avg:161.09ms step:368/1875 train_loss:3.8659 train_time:57668ms step_avg:161.08ms step:369/1875 train_loss:3.7550 train_time:57827ms step_avg:161.08ms step:370/1875 train_loss:3.9044 train_time:57985ms step_avg:161.07ms step:371/1875 train_loss:3.7462 train_time:58144ms step_avg:161.06ms step:372/1875 train_loss:3.7005 train_time:58304ms step_avg:161.06ms step:373/1875 train_loss:3.9354 train_time:58462ms step_avg:161.05ms step:374/1875 train_loss:3.8507 train_time:58620ms step_avg:161.04ms step:375/1875 train_loss:3.8144 train_time:58780ms step_avg:161.04ms step:375/1875 val_loss:3.8399 train_time:58823ms step_avg:161.16ms step:376/1875 train_loss:3.8919 train_time:58944ms step_avg:161.05ms step:377/1875 train_loss:3.7929 train_time:59278ms step_avg:161.52ms step:378/1875 train_loss:3.8609 train_time:59442ms step_avg:161.53ms step:379/1875 train_loss:3.8857 train_time:59775ms step_avg:161.99ms step:380/1875 train_loss:3.9628 train_time:59933ms step_avg:161.98ms step:381/1875 train_loss:3.8601 train_time:60090ms step_avg:161.97ms step:382/1875 train_loss:3.8104 train_time:60252ms step_avg:161.97ms step:383/1875 train_loss:3.8062 train_time:60410ms step_avg:161.96ms step:384/1875 train_loss:3.8919 train_time:60569ms step_avg:161.95ms step:385/1875 train_loss:3.7896 train_time:60729ms step_avg:161.94ms step:386/1875 train_loss:3.9102 train_time:60888ms step_avg:161.94ms step:387/1875 train_loss:4.0759 train_time:61048ms step_avg:161.93ms step:388/1875 train_loss:3.8179 train_time:61208ms step_avg:161.93ms step:389/1875 train_loss:3.8171 train_time:61368ms step_avg:161.92ms step:390/1875 train_loss:3.9028 train_time:61529ms step_avg:161.92ms step:391/1875 train_loss:3.8324 train_time:61688ms step_avg:161.91ms step:392/1875 train_loss:3.9380 train_time:61845ms step_avg:161.90ms step:393/1875 train_loss:3.7742 train_time:62003ms step_avg:161.89ms step:394/1875 train_loss:3.9121 train_time:62162ms step_avg:161.88ms step:395/1875 train_loss:3.6389 train_time:62322ms step_avg:161.87ms step:396/1875 train_loss:3.8499 train_time:62482ms step_avg:161.87ms step:397/1875 train_loss:3.8909 train_time:62645ms step_avg:161.87ms step:398/1875 train_loss:3.9054 train_time:62805ms step_avg:161.87ms step:399/1875 train_loss:3.8068 train_time:62962ms step_avg:161.86ms step:400/1875 train_loss:3.8406 train_time:63124ms step_avg:161.86ms step:401/1875 train_loss:3.9297 train_time:63283ms step_avg:161.85ms step:402/1875 train_loss:3.8611 train_time:63445ms step_avg:161.85ms step:403/1875 train_loss:3.9697 train_time:63605ms step_avg:161.84ms step:404/1875 train_loss:3.7018 train_time:63764ms step_avg:161.84ms step:405/1875 train_loss:3.8036 train_time:63924ms step_avg:161.83ms step:406/1875 train_loss:4.1067 train_time:64083ms step_avg:161.83ms step:407/1875 train_loss:3.7998 train_time:64242ms step_avg:161.82ms step:408/1875 train_loss:3.8491 train_time:64401ms step_avg:161.81ms step:409/1875 train_loss:3.8810 train_time:64561ms step_avg:161.81ms step:410/1875 train_loss:3.7770 train_time:64721ms step_avg:161.80ms step:411/1875 train_loss:3.7920 train_time:64883ms step_avg:161.80ms step:412/1875 train_loss:4.1972 train_time:65044ms step_avg:161.80ms step:413/1875 train_loss:3.6715 train_time:65202ms step_avg:161.79ms step:414/1875 train_loss:4.0492 train_time:65361ms step_avg:161.79ms step:415/1875 train_loss:3.7771 train_time:65521ms step_avg:161.78ms step:416/1875 train_loss:3.7842 train_time:65682ms step_avg:161.78ms step:417/1875 train_loss:3.9860 train_time:65845ms step_avg:161.78ms step:418/1875 train_loss:3.7160 train_time:66004ms step_avg:161.78ms step:419/1875 train_loss:3.8287 train_time:66162ms step_avg:161.77ms step:420/1875 train_loss:3.7304 train_time:66322ms step_avg:161.76ms step:421/1875 train_loss:3.6738 train_time:66479ms step_avg:161.75ms step:422/1875 train_loss:3.8044 train_time:66641ms step_avg:161.75ms step:423/1875 train_loss:3.9008 train_time:66803ms step_avg:161.75ms step:424/1875 train_loss:3.6339 train_time:66962ms step_avg:161.74ms step:425/1875 train_loss:3.8051 train_time:67123ms step_avg:161.74ms step:426/1875 train_loss:3.6931 train_time:67282ms step_avg:161.74ms step:427/1875 train_loss:3.9159 train_time:67440ms step_avg:161.73ms step:428/1875 train_loss:3.8419 train_time:67601ms step_avg:161.73ms step:429/1875 train_loss:3.7849 train_time:67762ms step_avg:161.72ms step:430/1875 train_loss:3.7417 train_time:67923ms step_avg:161.72ms step:431/1875 train_loss:3.6421 train_time:68086ms step_avg:161.72ms step:432/1875 train_loss:3.7972 train_time:68247ms step_avg:161.72ms step:433/1875 train_loss:3.8562 train_time:68406ms step_avg:161.72ms step:434/1875 train_loss:3.7979 train_time:68565ms step_avg:161.71ms step:435/1875 train_loss:3.8421 train_time:68725ms step_avg:161.71ms step:436/1875 train_loss:3.8647 train_time:68885ms step_avg:161.70ms step:437/1875 train_loss:3.7399 train_time:69044ms step_avg:161.70ms step:438/1875 train_loss:3.7370 train_time:69203ms step_avg:161.69ms step:439/1875 train_loss:3.7209 train_time:69364ms step_avg:161.69ms step:440/1875 train_loss:3.9120 train_time:69525ms step_avg:161.69ms step:441/1875 train_loss:3.7878 train_time:69685ms step_avg:161.68ms step:442/1875 train_loss:3.7608 train_time:69847ms step_avg:161.68ms step:443/1875 train_loss:3.6594 train_time:70004ms step_avg:161.67ms step:444/1875 train_loss:3.9499 train_time:70161ms step_avg:161.66ms step:445/1875 train_loss:3.8786 train_time:70320ms step_avg:161.65ms step:446/1875 train_loss:3.8545 train_time:70480ms step_avg:161.65ms step:447/1875 train_loss:3.7739 train_time:70640ms step_avg:161.65ms step:448/1875 train_loss:3.8824 train_time:70801ms step_avg:161.65ms step:449/1875 train_loss:3.7081 train_time:70964ms step_avg:161.65ms step:450/1875 train_loss:3.7314 train_time:71124ms step_avg:161.65ms step:451/1875 train_loss:3.6108 train_time:71286ms step_avg:161.65ms step:452/1875 train_loss:3.7441 train_time:71446ms step_avg:161.64ms step:453/1875 train_loss:3.7084 train_time:71607ms step_avg:161.64ms step:454/1875 train_loss:3.6576 train_time:71766ms step_avg:161.63ms step:455/1875 train_loss:3.8744 train_time:71925ms step_avg:161.63ms step:456/1875 train_loss:3.7616 train_time:72084ms step_avg:161.62ms step:457/1875 train_loss:3.8091 train_time:72244ms step_avg:161.62ms step:458/1875 train_loss:3.8595 train_time:72402ms step_avg:161.61ms step:459/1875 train_loss:3.6581 train_time:72566ms step_avg:161.62ms step:460/1875 train_loss:3.8342 train_time:72724ms step_avg:161.61ms step:461/1875 train_loss:3.7140 train_time:72887ms step_avg:161.61ms step:462/1875 train_loss:3.7618 train_time:73047ms step_avg:161.61ms step:463/1875 train_loss:3.8132 train_time:73206ms step_avg:161.60ms step:464/1875 train_loss:3.7394 train_time:73365ms step_avg:161.60ms step:465/1875 train_loss:3.7504 train_time:73523ms step_avg:161.59ms step:466/1875 train_loss:3.8293 train_time:73683ms step_avg:161.59ms step:467/1875 train_loss:3.8350 train_time:73844ms step_avg:161.59ms step:468/1875 train_loss:3.8315 train_time:74001ms step_avg:161.57ms step:469/1875 train_loss:3.7190 train_time:74161ms step_avg:161.57ms step:470/1875 train_loss:3.7895 train_time:74322ms step_avg:161.57ms step:471/1875 train_loss:3.8471 train_time:74485ms step_avg:161.57ms step:472/1875 train_loss:3.8146 train_time:74648ms step_avg:161.58ms step:473/1875 train_loss:3.7507 train_time:74805ms step_avg:161.57ms step:474/1875 train_loss:3.6281 train_time:74963ms step_avg:161.56ms step:475/1875 train_loss:4.0428 train_time:75124ms step_avg:161.56ms step:476/1875 train_loss:3.7966 train_time:75285ms step_avg:161.56ms step:477/1875 train_loss:3.6171 train_time:75447ms step_avg:161.56ms step:478/1875 train_loss:3.8546 train_time:75606ms step_avg:161.55ms step:479/1875 train_loss:3.8136 train_time:75769ms step_avg:161.55ms step:480/1875 train_loss:3.9488 train_time:75929ms step_avg:161.55ms step:481/1875 train_loss:3.7605 train_time:76087ms step_avg:161.54ms step:482/1875 train_loss:3.5607 train_time:76246ms step_avg:161.54ms step:483/1875 train_loss:3.8469 train_time:76403ms step_avg:161.53ms step:484/1875 train_loss:3.6875 train_time:76564ms step_avg:161.53ms step:485/1875 train_loss:3.6894 train_time:76725ms step_avg:161.53ms step:486/1875 train_loss:3.6115 train_time:76887ms step_avg:161.53ms step:487/1875 train_loss:3.7146 train_time:77045ms step_avg:161.52ms step:488/1875 train_loss:3.9175 train_time:77203ms step_avg:161.51ms step:489/1875 train_loss:3.7505 train_time:77365ms step_avg:161.51ms step:490/1875 train_loss:3.6310 train_time:77524ms step_avg:161.51ms step:491/1875 train_loss:3.6572 train_time:77683ms step_avg:161.50ms step:492/1875 train_loss:3.7652 train_time:77845ms step_avg:161.50ms step:493/1875 train_loss:3.6100 train_time:78008ms step_avg:161.51ms step:494/1875 train_loss:3.7483 train_time:78167ms step_avg:161.50ms step:495/1875 train_loss:3.6927 train_time:78328ms step_avg:161.50ms step:496/1875 train_loss:3.5546 train_time:78490ms step_avg:161.50ms step:497/1875 train_loss:3.7750 train_time:78647ms step_avg:161.49ms step:498/1875 train_loss:3.8252 train_time:78804ms step_avg:161.48ms step:499/1875 train_loss:3.8504 train_time:78965ms step_avg:161.48ms step:500/1875 train_loss:3.7624 train_time:79127ms step_avg:161.48ms step:500/1875 val_loss:3.7415 train_time:79170ms step_avg:161.57ms step:501/1875 train_loss:3.8454 train_time:79290ms step_avg:161.49ms step:502/1875 train_loss:3.7799 train_time:79450ms step_avg:161.48ms step:503/1875 train_loss:3.8159 train_time:79609ms step_avg:161.48ms step:504/1875 train_loss:3.7750 train_time:79767ms step_avg:161.47ms step:505/1875 train_loss:3.8428 train_time:79926ms step_avg:161.47ms step:506/1875 train_loss:3.6800 train_time:80086ms step_avg:161.46ms step:507/1875 train_loss:3.8047 train_time:80243ms step_avg:161.46ms step:508/1875 train_loss:3.8478 train_time:80406ms step_avg:161.46ms step:509/1875 train_loss:3.8086 train_time:80563ms step_avg:161.45ms step:510/1875 train_loss:3.6068 train_time:80723ms step_avg:161.45ms step:511/1875 train_loss:3.8346 train_time:80885ms step_avg:161.45ms step:512/1875 train_loss:3.7601 train_time:81051ms step_avg:161.46ms step:513/1875 train_loss:3.7067 train_time:81209ms step_avg:161.45ms step:514/1875 train_loss:3.8325 train_time:81371ms step_avg:161.45ms step:515/1875 train_loss:3.7783 train_time:81529ms step_avg:161.44ms step:516/1875 train_loss:4.0992 train_time:81691ms step_avg:161.44ms step:517/1875 train_loss:3.7273 train_time:81849ms step_avg:161.44ms step:518/1875 train_loss:3.8105 train_time:82007ms step_avg:161.43ms step:519/1875 train_loss:3.6888 train_time:82167ms step_avg:161.43ms step:520/1875 train_loss:3.7196 train_time:82328ms step_avg:161.43ms step:521/1875 train_loss:3.6971 train_time:82488ms step_avg:161.43ms step:522/1875 train_loss:3.6883 train_time:82650ms step_avg:161.43ms step:523/1875 train_loss:4.2893 train_time:82809ms step_avg:161.42ms step:524/1875 train_loss:3.7849 train_time:82967ms step_avg:161.41ms step:525/1875 train_loss:3.7261 train_time:83126ms step_avg:161.41ms step:526/1875 train_loss:3.7418 train_time:83287ms step_avg:161.41ms step:527/1875 train_loss:3.6993 train_time:83446ms step_avg:161.40ms step:528/1875 train_loss:3.6727 train_time:83606ms step_avg:161.40ms step:529/1875 train_loss:3.8881 train_time:83769ms step_avg:161.40ms step:530/1875 train_loss:3.6807 train_time:83929ms step_avg:161.40ms step:531/1875 train_loss:3.9582 train_time:84090ms step_avg:161.40ms step:532/1875 train_loss:3.7773 train_time:84249ms step_avg:161.40ms step:533/1875 train_loss:3.7003 train_time:84408ms step_avg:161.39ms step:534/1875 train_loss:3.7048 train_time:84567ms step_avg:161.39ms step:535/1875 train_loss:3.6404 train_time:84728ms step_avg:161.39ms step:536/1875 train_loss:3.7861 train_time:84892ms step_avg:161.39ms step:537/1875 train_loss:3.7726 train_time:85053ms step_avg:161.39ms step:538/1875 train_loss:3.6733 train_time:85215ms step_avg:161.39ms step:539/1875 train_loss:4.1348 train_time:85378ms step_avg:161.39ms step:540/1875 train_loss:3.7194 train_time:85535ms step_avg:161.39ms step:541/1875 train_loss:3.8338 train_time:85693ms step_avg:161.38ms step:542/1875 train_loss:3.6451 train_time:85853ms step_avg:161.38ms step:543/1875 train_loss:3.6326 train_time:86012ms step_avg:161.37ms step:544/1875 train_loss:3.6743 train_time:86172ms step_avg:161.37ms step:545/1875 train_loss:3.6274 train_time:86331ms step_avg:161.37ms step:546/1875 train_loss:3.6664 train_time:86491ms step_avg:161.36ms step:547/1875 train_loss:3.6917 train_time:86649ms step_avg:161.36ms step:548/1875 train_loss:3.6479 train_time:86808ms step_avg:161.35ms step:549/1875 train_loss:3.7725 train_time:86967ms step_avg:161.35ms step:550/1875 train_loss:3.6545 train_time:87129ms step_avg:161.35ms step:551/1875 train_loss:3.6745 train_time:87287ms step_avg:161.34ms step:552/1875 train_loss:3.9784 train_time:87447ms step_avg:161.34ms step:553/1875 train_loss:3.8025 train_time:87608ms step_avg:161.34ms step:554/1875 train_loss:3.7570 train_time:87766ms step_avg:161.33ms step:555/1875 train_loss:3.6726 train_time:87924ms step_avg:161.33ms step:556/1875 train_loss:3.7437 train_time:88083ms step_avg:161.32ms step:557/1875 train_loss:3.3582 train_time:88244ms step_avg:161.32ms step:558/1875 train_loss:3.6510 train_time:88403ms step_avg:161.32ms step:559/1875 train_loss:3.6874 train_time:88562ms step_avg:161.31ms step:560/1875 train_loss:3.7291 train_time:88724ms step_avg:161.32ms step:561/1875 train_loss:3.6513 train_time:88883ms step_avg:161.31ms step:562/1875 train_loss:3.5941 train_time:89042ms step_avg:161.31ms step:563/1875 train_loss:3.8026 train_time:89201ms step_avg:161.30ms step:564/1875 train_loss:3.6193 train_time:89364ms step_avg:161.31ms step:565/1875 train_loss:3.7197 train_time:89523ms step_avg:161.30ms step:566/1875 train_loss:3.6541 train_time:89858ms step_avg:161.62ms step:567/1875 train_loss:3.6397 train_time:90023ms step_avg:161.62ms step:568/1875 train_loss:3.7408 train_time:90184ms step_avg:161.62ms step:569/1875 train_loss:3.6995 train_time:90526ms step_avg:161.94ms step:570/1875 train_loss:3.7227 train_time:90685ms step_avg:161.94ms step:571/1875 train_loss:3.7977 train_time:90845ms step_avg:161.93ms step:572/1875 train_loss:3.7664 train_time:91005ms step_avg:161.93ms step:573/1875 train_loss:3.7698 train_time:91168ms step_avg:161.93ms step:574/1875 train_loss:3.8181 train_time:91329ms step_avg:161.93ms step:575/1875 train_loss:3.7738 train_time:91489ms step_avg:161.93ms step:576/1875 train_loss:3.8010 train_time:91646ms step_avg:161.92ms step:577/1875 train_loss:3.7168 train_time:91806ms step_avg:161.92ms step:578/1875 train_loss:3.7174 train_time:91968ms step_avg:161.92ms step:579/1875 train_loss:3.7155 train_time:92127ms step_avg:161.91ms step:580/1875 train_loss:3.6357 train_time:92287ms step_avg:161.91ms step:581/1875 train_loss:3.6868 train_time:92447ms step_avg:161.90ms step:582/1875 train_loss:3.8953 train_time:92606ms step_avg:161.90ms step:583/1875 train_loss:3.6762 train_time:92768ms step_avg:161.90ms step:584/1875 train_loss:3.6251 train_time:92929ms step_avg:161.90ms step:585/1875 train_loss:3.8404 train_time:93086ms step_avg:161.89ms step:586/1875 train_loss:3.5519 train_time:93248ms step_avg:161.89ms step:587/1875 train_loss:3.7171 train_time:93406ms step_avg:161.88ms step:588/1875 train_loss:3.6950 train_time:93565ms step_avg:161.88ms step:589/1875 train_loss:4.0348 train_time:93727ms step_avg:161.88ms step:590/1875 train_loss:3.8169 train_time:93888ms step_avg:161.88ms step:591/1875 train_loss:3.5580 train_time:94048ms step_avg:161.87ms step:592/1875 train_loss:3.5857 train_time:94210ms step_avg:161.87ms step:593/1875 train_loss:3.5492 train_time:94373ms step_avg:161.87ms step:594/1875 train_loss:3.5853 train_time:94530ms step_avg:161.87ms step:595/1875 train_loss:3.9617 train_time:94693ms step_avg:161.87ms step:596/1875 train_loss:3.6813 train_time:94854ms step_avg:161.87ms step:597/1875 train_loss:3.6278 train_time:95011ms step_avg:161.86ms step:598/1875 train_loss:3.7063 train_time:95171ms step_avg:161.85ms step:599/1875 train_loss:3.5207 train_time:95329ms step_avg:161.85ms step:600/1875 train_loss:3.6417 train_time:95489ms step_avg:161.85ms step:601/1875 train_loss:3.6891 train_time:95651ms step_avg:161.85ms step:602/1875 train_loss:3.7068 train_time:95811ms step_avg:161.84ms step:603/1875 train_loss:3.8232 train_time:95970ms step_avg:161.84ms step:604/1875 train_loss:3.6569 train_time:96129ms step_avg:161.83ms step:605/1875 train_loss:3.6555 train_time:96289ms step_avg:161.83ms step:606/1875 train_loss:3.6081 train_time:96451ms step_avg:161.83ms step:607/1875 train_loss:3.8753 train_time:96611ms step_avg:161.83ms step:608/1875 train_loss:3.6850 train_time:96771ms step_avg:161.82ms step:609/1875 train_loss:3.6593 train_time:96928ms step_avg:161.82ms step:610/1875 train_loss:3.7465 train_time:97086ms step_avg:161.81ms step:611/1875 train_loss:3.6441 train_time:97246ms step_avg:161.81ms step:612/1875 train_loss:3.6091 train_time:97407ms step_avg:161.81ms step:613/1875 train_loss:3.8015 train_time:97567ms step_avg:161.80ms step:614/1875 train_loss:3.7456 train_time:97728ms step_avg:161.80ms step:615/1875 train_loss:3.7412 train_time:97888ms step_avg:161.80ms step:616/1875 train_loss:3.6791 train_time:98046ms step_avg:161.79ms step:617/1875 train_loss:3.5906 train_time:98207ms step_avg:161.79ms step:618/1875 train_loss:3.7337 train_time:98367ms step_avg:161.79ms step:619/1875 train_loss:3.6021 train_time:98527ms step_avg:161.79ms step:620/1875 train_loss:3.6290 train_time:98688ms step_avg:161.78ms step:621/1875 train_loss:3.9566 train_time:98850ms step_avg:161.78ms step:622/1875 train_loss:3.6139 train_time:99012ms step_avg:161.78ms step:623/1875 train_loss:3.6510 train_time:99173ms step_avg:161.78ms step:624/1875 train_loss:3.7388 train_time:99330ms step_avg:161.78ms step:625/1875 train_loss:3.7482 train_time:99489ms step_avg:161.77ms step:625/1875 val_loss:3.6656 train_time:99531ms step_avg:161.84ms step:626/1875 train_loss:3.7831 train_time:99650ms step_avg:161.77ms step:627/1875 train_loss:3.7522 train_time:99810ms step_avg:161.77ms step:628/1875 train_loss:3.8104 train_time:99968ms step_avg:161.76ms step:629/1875 train_loss:3.6360 train_time:100129ms step_avg:161.76ms step:630/1875 train_loss:3.7581 train_time:100288ms step_avg:161.75ms step:631/1875 train_loss:3.7853 train_time:100447ms step_avg:161.75ms step:632/1875 train_loss:3.6890 train_time:100608ms step_avg:161.75ms step:633/1875 train_loss:3.6460 train_time:100769ms step_avg:161.75ms step:634/1875 train_loss:3.7445 train_time:100928ms step_avg:161.74ms step:635/1875 train_loss:3.9960 train_time:101088ms step_avg:161.74ms step:636/1875 train_loss:3.5871 train_time:101247ms step_avg:161.74ms step:637/1875 train_loss:3.3911 train_time:101410ms step_avg:161.74ms step:638/1875 train_loss:3.6309 train_time:101567ms step_avg:161.73ms step:639/1875 train_loss:3.6762 train_time:101726ms step_avg:161.73ms step:640/1875 train_loss:3.6138 train_time:101888ms step_avg:161.73ms step:641/1875 train_loss:3.6142 train_time:102046ms step_avg:161.72ms step:642/1875 train_loss:3.6769 train_time:102205ms step_avg:161.72ms step:643/1875 train_loss:3.6487 train_time:102365ms step_avg:161.71ms step:644/1875 train_loss:3.5976 train_time:102524ms step_avg:161.71ms step:645/1875 train_loss:3.8164 train_time:102685ms step_avg:161.71ms step:646/1875 train_loss:3.7226 train_time:102846ms step_avg:161.71ms step:647/1875 train_loss:3.6966 train_time:103005ms step_avg:161.70ms step:648/1875 train_loss:3.7481 train_time:103168ms step_avg:161.71ms step:649/1875 train_loss:3.8114 train_time:103327ms step_avg:161.70ms step:650/1875 train_loss:3.6636 train_time:103488ms step_avg:161.70ms step:651/1875 train_loss:3.8119 train_time:103649ms step_avg:161.70ms step:652/1875 train_loss:3.6265 train_time:103808ms step_avg:161.69ms step:653/1875 train_loss:3.7011 train_time:103967ms step_avg:161.69ms step:654/1875 train_loss:3.4725 train_time:104126ms step_avg:161.69ms step:655/1875 train_loss:3.6158 train_time:104284ms step_avg:161.68ms step:656/1875 train_loss:3.6180 train_time:104443ms step_avg:161.68ms step:657/1875 train_loss:3.5351 train_time:104605ms step_avg:161.68ms step:658/1875 train_loss:3.7272 train_time:104765ms step_avg:161.67ms step:659/1875 train_loss:3.6288 train_time:104925ms step_avg:161.67ms step:660/1875 train_loss:3.7187 train_time:105086ms step_avg:161.67ms step:661/1875 train_loss:3.7888 train_time:105247ms step_avg:161.67ms step:662/1875 train_loss:3.7146 train_time:105406ms step_avg:161.67ms step:663/1875 train_loss:3.5966 train_time:105564ms step_avg:161.66ms step:664/1875 train_loss:3.6567 train_time:105725ms step_avg:161.66ms step:665/1875 train_loss:3.5308 train_time:105885ms step_avg:161.66ms step:666/1875 train_loss:3.8262 train_time:106043ms step_avg:161.65ms step:667/1875 train_loss:3.6543 train_time:106204ms step_avg:161.65ms step:668/1875 train_loss:3.6798 train_time:106364ms step_avg:161.65ms step:669/1875 train_loss:3.5265 train_time:106526ms step_avg:161.65ms step:670/1875 train_loss:3.6433 train_time:106685ms step_avg:161.64ms step:671/1875 train_loss:3.5976 train_time:106846ms step_avg:161.64ms step:672/1875 train_loss:3.6129 train_time:107007ms step_avg:161.64ms step:673/1875 train_loss:3.8918 train_time:107167ms step_avg:161.64ms step:674/1875 train_loss:3.6643 train_time:107326ms step_avg:161.64ms step:675/1875 train_loss:3.7510 train_time:107487ms step_avg:161.63ms step:676/1875 train_loss:3.5303 train_time:107647ms step_avg:161.63ms step:677/1875 train_loss:3.6349 train_time:107807ms step_avg:161.63ms step:678/1875 train_loss:3.5920 train_time:107968ms step_avg:161.63ms step:679/1875 train_loss:3.7095 train_time:108129ms step_avg:161.63ms step:680/1875 train_loss:3.6293 train_time:108291ms step_avg:161.63ms step:681/1875 train_loss:3.6623 train_time:108449ms step_avg:161.62ms step:682/1875 train_loss:3.6956 train_time:108612ms step_avg:161.63ms step:683/1875 train_loss:3.7815 train_time:108772ms step_avg:161.62ms step:684/1875 train_loss:3.6847 train_time:108931ms step_avg:161.62ms step:685/1875 train_loss:3.7342 train_time:109093ms step_avg:161.62ms step:686/1875 train_loss:3.6755 train_time:109251ms step_avg:161.61ms step:687/1875 train_loss:3.7126 train_time:109410ms step_avg:161.61ms step:688/1875 train_loss:3.2366 train_time:109573ms step_avg:161.61ms step:689/1875 train_loss:3.4498 train_time:109733ms step_avg:161.61ms step:690/1875 train_loss:3.5768 train_time:109895ms step_avg:161.61ms step:691/1875 train_loss:3.4543 train_time:110052ms step_avg:161.60ms step:692/1875 train_loss:3.6657 train_time:110212ms step_avg:161.60ms step:693/1875 train_loss:3.6920 train_time:110371ms step_avg:161.60ms step:694/1875 train_loss:3.5950 train_time:110529ms step_avg:161.59ms step:695/1875 train_loss:3.5774 train_time:110687ms step_avg:161.59ms step:696/1875 train_loss:3.8920 train_time:110846ms step_avg:161.58ms step:697/1875 train_loss:3.6229 train_time:111007ms step_avg:161.58ms step:698/1875 train_loss:3.6873 train_time:111166ms step_avg:161.58ms step:699/1875 train_loss:3.8092 train_time:111327ms step_avg:161.58ms step:700/1875 train_loss:3.6076 train_time:111486ms step_avg:161.57ms step:701/1875 train_loss:3.5868 train_time:111645ms step_avg:161.57ms step:702/1875 train_loss:3.5553 train_time:111807ms step_avg:161.57ms step:703/1875 train_loss:3.5330 train_time:111967ms step_avg:161.57ms step:704/1875 train_loss:3.6143 train_time:112126ms step_avg:161.57ms step:705/1875 train_loss:3.5989 train_time:112290ms step_avg:161.57ms step:706/1875 train_loss:3.6271 train_time:112452ms step_avg:161.57ms step:707/1875 train_loss:3.6906 train_time:112612ms step_avg:161.57ms step:708/1875 train_loss:3.6429 train_time:112773ms step_avg:161.57ms step:709/1875 train_loss:3.6173 train_time:112935ms step_avg:161.57ms step:710/1875 train_loss:3.5891 train_time:113095ms step_avg:161.56ms step:711/1875 train_loss:3.6351 train_time:113256ms step_avg:161.56ms step:712/1875 train_loss:3.6903 train_time:113420ms step_avg:161.57ms step:713/1875 train_loss:3.6839 train_time:113582ms step_avg:161.57ms step:714/1875 train_loss:3.5988 train_time:113739ms step_avg:161.56ms step:715/1875 train_loss:3.6147 train_time:113898ms step_avg:161.56ms step:716/1875 train_loss:3.6275 train_time:114058ms step_avg:161.56ms step:717/1875 train_loss:3.7450 train_time:114223ms step_avg:161.56ms step:718/1875 train_loss:3.6345 train_time:114381ms step_avg:161.55ms step:719/1875 train_loss:3.7187 train_time:114540ms step_avg:161.55ms step:720/1875 train_loss:3.8776 train_time:114704ms step_avg:161.55ms step:721/1875 train_loss:3.5089 train_time:114863ms step_avg:161.55ms step:722/1875 train_loss:3.7735 train_time:115023ms step_avg:161.55ms step:723/1875 train_loss:3.8030 train_time:115182ms step_avg:161.55ms step:724/1875 train_loss:3.6090 train_time:115344ms step_avg:161.55ms step:725/1875 train_loss:3.6933 train_time:115506ms step_avg:161.55ms step:726/1875 train_loss:3.5776 train_time:115666ms step_avg:161.55ms step:727/1875 train_loss:3.6126 train_time:115829ms step_avg:161.55ms step:728/1875 train_loss:3.7787 train_time:115989ms step_avg:161.54ms step:729/1875 train_loss:3.6986 train_time:116148ms step_avg:161.54ms step:730/1875 train_loss:3.7022 train_time:116309ms step_avg:161.54ms step:731/1875 train_loss:3.6046 train_time:116468ms step_avg:161.54ms step:732/1875 train_loss:3.6401 train_time:116626ms step_avg:161.53ms step:733/1875 train_loss:3.8689 train_time:116788ms step_avg:161.53ms step:734/1875 train_loss:3.6045 train_time:116949ms step_avg:161.53ms step:735/1875 train_loss:3.6481 train_time:117108ms step_avg:161.53ms step:736/1875 train_loss:3.7736 train_time:117268ms step_avg:161.53ms step:737/1875 train_loss:3.7186 train_time:117427ms step_avg:161.52ms step:738/1875 train_loss:3.6326 train_time:117586ms step_avg:161.52ms step:739/1875 train_loss:3.5444 train_time:117746ms step_avg:161.52ms step:740/1875 train_loss:4.1419 train_time:117912ms step_avg:161.52ms step:741/1875 train_loss:3.5379 train_time:118071ms step_avg:161.52ms step:742/1875 train_loss:3.5981 train_time:118233ms step_avg:161.52ms step:743/1875 train_loss:3.6245 train_time:118393ms step_avg:161.52ms step:744/1875 train_loss:3.6857 train_time:118553ms step_avg:161.52ms step:745/1875 train_loss:3.6266 train_time:118714ms step_avg:161.52ms step:746/1875 train_loss:3.6311 train_time:118872ms step_avg:161.51ms step:747/1875 train_loss:3.6840 train_time:119032ms step_avg:161.51ms step:748/1875 train_loss:3.6028 train_time:119197ms step_avg:161.51ms step:749/1875 train_loss:3.6054 train_time:119357ms step_avg:161.51ms step:750/1875 train_loss:3.6450 train_time:119515ms step_avg:161.51ms step:750/1875 val_loss:3.6068 train_time:119559ms step_avg:161.57ms step:751/1875 train_loss:3.6143 train_time:119678ms step_avg:161.51ms step:752/1875 train_loss:3.6611 train_time:119836ms step_avg:161.50ms step:753/1875 train_loss:3.6584 train_time:119996ms step_avg:161.50ms step:754/1875 train_loss:3.6288 train_time:120155ms step_avg:161.50ms step:755/1875 train_loss:3.7205 train_time:120479ms step_avg:161.72ms step:756/1875 train_loss:3.5045 train_time:120650ms step_avg:161.73ms step:757/1875 train_loss:3.7587 train_time:120814ms step_avg:161.73ms step:758/1875 train_loss:3.7034 train_time:120973ms step_avg:161.73ms step:759/1875 train_loss:3.6320 train_time:121299ms step_avg:161.95ms step:760/1875 train_loss:3.7379 train_time:121458ms step_avg:161.94ms step:761/1875 train_loss:3.4380 train_time:121619ms step_avg:161.94ms step:762/1875 train_loss:3.5924 train_time:121777ms step_avg:161.94ms step:763/1875 train_loss:3.7026 train_time:121936ms step_avg:161.93ms step:764/1875 train_loss:3.3590 train_time:122095ms step_avg:161.93ms step:765/1875 train_loss:3.7738 train_time:122254ms step_avg:161.93ms step:766/1875 train_loss:3.6053 train_time:122415ms step_avg:161.93ms step:767/1875 train_loss:3.5985 train_time:122574ms step_avg:161.92ms step:768/1875 train_loss:3.6091 train_time:122734ms step_avg:161.92ms step:769/1875 train_loss:3.6209 train_time:122895ms step_avg:161.92ms step:770/1875 train_loss:3.6727 train_time:123053ms step_avg:161.91ms step:771/1875 train_loss:3.9234 train_time:123213ms step_avg:161.91ms step:772/1875 train_loss:3.4915 train_time:123371ms step_avg:161.90ms step:773/1875 train_loss:3.6760 train_time:123531ms step_avg:161.90ms step:774/1875 train_loss:3.6779 train_time:123690ms step_avg:161.90ms step:775/1875 train_loss:3.6431 train_time:123849ms step_avg:161.89ms step:776/1875 train_loss:3.4359 train_time:124010ms step_avg:161.89ms step:777/1875 train_loss:3.4248 train_time:124170ms step_avg:161.89ms step:778/1875 train_loss:3.5290 train_time:124328ms step_avg:161.89ms step:779/1875 train_loss:3.6169 train_time:124490ms step_avg:161.89ms step:780/1875 train_loss:3.6298 train_time:124650ms step_avg:161.88ms step:781/1875 train_loss:3.7083 train_time:124810ms step_avg:161.88ms step:782/1875 train_loss:3.6252 train_time:124970ms step_avg:161.88ms step:783/1875 train_loss:3.6109 train_time:125127ms step_avg:161.87ms step:784/1875 train_loss:3.6361 train_time:125289ms step_avg:161.87ms step:785/1875 train_loss:3.6012 train_time:125448ms step_avg:161.87ms step:786/1875 train_loss:3.4815 train_time:125609ms step_avg:161.87ms step:787/1875 train_loss:3.7507 train_time:125768ms step_avg:161.86ms step:788/1875 train_loss:3.5370 train_time:125930ms step_avg:161.86ms step:789/1875 train_loss:3.5930 train_time:126089ms step_avg:161.86ms step:790/1875 train_loss:3.6630 train_time:126250ms step_avg:161.86ms step:791/1875 train_loss:3.8134 train_time:126414ms step_avg:161.86ms step:792/1875 train_loss:3.7977 train_time:126573ms step_avg:161.86ms step:793/1875 train_loss:3.5258 train_time:126730ms step_avg:161.85ms step:794/1875 train_loss:3.6336 train_time:126892ms step_avg:161.85ms step:795/1875 train_loss:3.7057 train_time:127053ms step_avg:161.85ms step:796/1875 train_loss:3.7527 train_time:127215ms step_avg:161.85ms step:797/1875 train_loss:3.5652 train_time:127374ms step_avg:161.85ms step:798/1875 train_loss:3.6818 train_time:127533ms step_avg:161.84ms step:799/1875 train_loss:3.5832 train_time:127696ms step_avg:161.85ms step:800/1875 train_loss:3.5734 train_time:127853ms step_avg:161.84ms step:801/1875 train_loss:3.6714 train_time:128012ms step_avg:161.84ms step:802/1875 train_loss:3.5310 train_time:128173ms step_avg:161.84ms step:803/1875 train_loss:3.5502 train_time:128332ms step_avg:161.83ms step:804/1875 train_loss:3.6677 train_time:128491ms step_avg:161.83ms step:805/1875 train_loss:3.5613 train_time:128652ms step_avg:161.83ms step:806/1875 train_loss:3.5971 train_time:128811ms step_avg:161.82ms step:807/1875 train_loss:3.6772 train_time:128972ms step_avg:161.82ms step:808/1875 train_loss:3.5913 train_time:129133ms step_avg:161.82ms step:809/1875 train_loss:3.5299 train_time:129291ms step_avg:161.82ms step:810/1875 train_loss:3.6033 train_time:129451ms step_avg:161.81ms step:811/1875 train_loss:3.6268 train_time:129610ms step_avg:161.81ms step:812/1875 train_loss:3.6291 train_time:129768ms step_avg:161.81ms step:813/1875 train_loss:3.6714 train_time:129926ms step_avg:161.80ms step:814/1875 train_loss:3.6071 train_time:130086ms step_avg:161.80ms step:815/1875 train_loss:3.6014 train_time:130247ms step_avg:161.80ms step:816/1875 train_loss:3.7215 train_time:130407ms step_avg:161.80ms step:817/1875 train_loss:3.8062 train_time:130566ms step_avg:161.79ms step:818/1875 train_loss:3.5599 train_time:130725ms step_avg:161.79ms step:819/1875 train_loss:3.7564 train_time:130887ms step_avg:161.79ms step:820/1875 train_loss:3.5434 train_time:131050ms step_avg:161.79ms step:821/1875 train_loss:3.6031 train_time:131206ms step_avg:161.78ms step:822/1875 train_loss:3.7346 train_time:131369ms step_avg:161.78ms step:823/1875 train_loss:3.6204 train_time:131530ms step_avg:161.78ms step:824/1875 train_loss:3.5483 train_time:131690ms step_avg:161.78ms step:825/1875 train_loss:3.6489 train_time:131851ms step_avg:161.78ms step:826/1875 train_loss:3.5167 train_time:132014ms step_avg:161.78ms step:827/1875 train_loss:3.7684 train_time:132174ms step_avg:161.78ms step:828/1875 train_loss:3.6558 train_time:132332ms step_avg:161.77ms step:829/1875 train_loss:3.6653 train_time:132493ms step_avg:161.77ms step:830/1875 train_loss:3.5637 train_time:132652ms step_avg:161.77ms step:831/1875 train_loss:3.6364 train_time:132811ms step_avg:161.77ms step:832/1875 train_loss:3.5493 train_time:132972ms step_avg:161.77ms step:833/1875 train_loss:3.6857 train_time:133133ms step_avg:161.77ms step:834/1875 train_loss:3.5127 train_time:133294ms step_avg:161.76ms step:835/1875 train_loss:3.4978 train_time:133452ms step_avg:161.76ms step:836/1875 train_loss:3.7556 train_time:133613ms step_avg:161.76ms step:837/1875 train_loss:3.4463 train_time:133772ms step_avg:161.76ms step:838/1875 train_loss:3.6272 train_time:133931ms step_avg:161.75ms step:839/1875 train_loss:3.4527 train_time:134093ms step_avg:161.75ms step:840/1875 train_loss:3.5057 train_time:134251ms step_avg:161.75ms step:841/1875 train_loss:3.6042 train_time:134410ms step_avg:161.74ms step:842/1875 train_loss:3.6172 train_time:134571ms step_avg:161.74ms step:843/1875 train_loss:3.6013 train_time:134729ms step_avg:161.74ms step:844/1875 train_loss:3.4694 train_time:134887ms step_avg:161.74ms step:845/1875 train_loss:3.6934 train_time:135048ms step_avg:161.73ms step:846/1875 train_loss:3.5558 train_time:135211ms step_avg:161.74ms step:847/1875 train_loss:3.5264 train_time:135372ms step_avg:161.73ms step:848/1875 train_loss:3.6726 train_time:135531ms step_avg:161.73ms step:849/1875 train_loss:3.5301 train_time:135692ms step_avg:161.73ms step:850/1875 train_loss:3.4716 train_time:135852ms step_avg:161.73ms step:851/1875 train_loss:3.7798 train_time:136013ms step_avg:161.73ms step:852/1875 train_loss:3.4879 train_time:136171ms step_avg:161.72ms step:853/1875 train_loss:3.6023 train_time:136330ms step_avg:161.72ms step:854/1875 train_loss:3.6950 train_time:136492ms step_avg:161.72ms step:855/1875 train_loss:3.5612 train_time:136650ms step_avg:161.72ms step:856/1875 train_loss:3.5809 train_time:136809ms step_avg:161.71ms step:857/1875 train_loss:3.6394 train_time:136969ms step_avg:161.71ms step:858/1875 train_loss:3.5198 train_time:137131ms step_avg:161.71ms step:859/1875 train_loss:3.5918 train_time:137290ms step_avg:161.71ms step:860/1875 train_loss:3.6280 train_time:137448ms step_avg:161.70ms step:861/1875 train_loss:3.6658 train_time:137612ms step_avg:161.71ms step:862/1875 train_loss:3.6342 train_time:137775ms step_avg:161.71ms step:863/1875 train_loss:3.6064 train_time:137935ms step_avg:161.71ms step:864/1875 train_loss:3.4196 train_time:138094ms step_avg:161.70ms step:865/1875 train_loss:3.6336 train_time:138251ms step_avg:161.70ms step:866/1875 train_loss:3.9033 train_time:138413ms step_avg:161.70ms step:867/1875 train_loss:3.4957 train_time:138571ms step_avg:161.69ms step:868/1875 train_loss:3.6766 train_time:138730ms step_avg:161.69ms step:869/1875 train_loss:3.6575 train_time:138890ms step_avg:161.69ms step:870/1875 train_loss:3.4859 train_time:139051ms step_avg:161.69ms step:871/1875 train_loss:3.4545 train_time:139213ms step_avg:161.69ms step:872/1875 train_loss:3.6907 train_time:139374ms step_avg:161.69ms step:873/1875 train_loss:3.4995 train_time:139533ms step_avg:161.68ms step:874/1875 train_loss:3.2575 train_time:139697ms step_avg:161.69ms step:875/1875 train_loss:3.6788 train_time:139855ms step_avg:161.68ms step:875/1875 val_loss:3.5596 train_time:139896ms step_avg:161.73ms step:876/1875 train_loss:3.4767 train_time:140014ms step_avg:161.68ms step:877/1875 train_loss:3.6618 train_time:140176ms step_avg:161.68ms step:878/1875 train_loss:3.5092 train_time:140335ms step_avg:161.68ms step:879/1875 train_loss:3.6857 train_time:140493ms step_avg:161.67ms step:880/1875 train_loss:3.3398 train_time:140651ms step_avg:161.67ms step:881/1875 train_loss:3.5268 train_time:140809ms step_avg:161.66ms step:882/1875 train_loss:3.7340 train_time:140968ms step_avg:161.66ms step:883/1875 train_loss:3.8782 train_time:141127ms step_avg:161.66ms step:884/1875 train_loss:3.6068 train_time:141290ms step_avg:161.66ms step:885/1875 train_loss:3.5253 train_time:141449ms step_avg:161.66ms step:886/1875 train_loss:3.6128 train_time:141609ms step_avg:161.65ms step:887/1875 train_loss:4.1152 train_time:141769ms step_avg:161.65ms step:888/1875 train_loss:3.8638 train_time:141933ms step_avg:161.65ms step:889/1875 train_loss:3.5628 train_time:142091ms step_avg:161.65ms step:890/1875 train_loss:3.5714 train_time:142250ms step_avg:161.65ms step:891/1875 train_loss:3.3976 train_time:142411ms step_avg:161.65ms step:892/1875 train_loss:3.7529 train_time:142567ms step_avg:161.64ms step:893/1875 train_loss:3.4606 train_time:142727ms step_avg:161.64ms step:894/1875 train_loss:3.6642 train_time:142889ms step_avg:161.64ms step:895/1875 train_loss:3.7219 train_time:143048ms step_avg:161.64ms step:896/1875 train_loss:3.5321 train_time:143208ms step_avg:161.63ms step:897/1875 train_loss:3.5791 train_time:143370ms step_avg:161.64ms step:898/1875 train_loss:3.6246 train_time:143532ms step_avg:161.64ms step:899/1875 train_loss:3.5207 train_time:143691ms step_avg:161.63ms step:900/1875 train_loss:3.4597 train_time:143849ms step_avg:161.63ms step:901/1875 train_loss:3.6599 train_time:144009ms step_avg:161.63ms step:902/1875 train_loss:3.6765 train_time:144167ms step_avg:161.62ms step:903/1875 train_loss:3.5788 train_time:144329ms step_avg:161.62ms step:904/1875 train_loss:3.5364 train_time:144491ms step_avg:161.62ms step:905/1875 train_loss:3.5449 train_time:144647ms step_avg:161.62ms step:906/1875 train_loss:3.7394 train_time:144809ms step_avg:161.62ms step:907/1875 train_loss:3.5538 train_time:144971ms step_avg:161.62ms step:908/1875 train_loss:3.6117 train_time:145129ms step_avg:161.61ms step:909/1875 train_loss:3.4912 train_time:145288ms step_avg:161.61ms step:910/1875 train_loss:3.5704 train_time:145451ms step_avg:161.61ms step:911/1875 train_loss:3.6811 train_time:145612ms step_avg:161.61ms step:912/1875 train_loss:3.6335 train_time:145772ms step_avg:161.61ms step:913/1875 train_loss:3.4857 train_time:145933ms step_avg:161.61ms step:914/1875 train_loss:3.7752 train_time:146093ms step_avg:161.61ms step:915/1875 train_loss:3.5726 train_time:146255ms step_avg:161.61ms step:916/1875 train_loss:3.6588 train_time:146414ms step_avg:161.60ms step:917/1875 train_loss:3.6361 train_time:146573ms step_avg:161.60ms step:918/1875 train_loss:4.8807 train_time:146734ms step_avg:161.60ms step:919/1875 train_loss:3.5317 train_time:146894ms step_avg:161.60ms step:920/1875 train_loss:3.6261 train_time:147052ms step_avg:161.60ms step:921/1875 train_loss:3.5844 train_time:147213ms step_avg:161.59ms step:922/1875 train_loss:3.6292 train_time:147373ms step_avg:161.59ms step:923/1875 train_loss:3.6509 train_time:147530ms step_avg:161.59ms step:924/1875 train_loss:3.7181 train_time:147690ms step_avg:161.59ms step:925/1875 train_loss:3.6848 train_time:147849ms step_avg:161.58ms step:926/1875 train_loss:3.5923 train_time:148007ms step_avg:161.58ms step:927/1875 train_loss:3.5949 train_time:148167ms step_avg:161.58ms step:928/1875 train_loss:3.8082 train_time:148329ms step_avg:161.58ms step:929/1875 train_loss:3.6424 train_time:148487ms step_avg:161.57ms step:930/1875 train_loss:3.4366 train_time:148647ms step_avg:161.57ms step:931/1875 train_loss:3.5366 train_time:148807ms step_avg:161.57ms step:932/1875 train_loss:3.6945 train_time:148969ms step_avg:161.57ms step:933/1875 train_loss:3.4241 train_time:149129ms step_avg:161.57ms step:934/1875 train_loss:3.6248 train_time:149290ms step_avg:161.57ms step:935/1875 train_loss:3.4823 train_time:149451ms step_avg:161.57ms step:936/1875 train_loss:3.5535 train_time:149613ms step_avg:161.57ms step:937/1875 train_loss:3.6613 train_time:149774ms step_avg:161.57ms step:938/1875 train_loss:3.5795 train_time:149932ms step_avg:161.57ms step:939/1875 train_loss:3.7034 train_time:150096ms step_avg:161.57ms step:940/1875 train_loss:3.5229 train_time:150253ms step_avg:161.56ms step:941/1875 train_loss:3.5844 train_time:150414ms step_avg:161.56ms step:942/1875 train_loss:3.3994 train_time:150573ms step_avg:161.56ms step:943/1875 train_loss:3.7508 train_time:150737ms step_avg:161.56ms step:944/1875 train_loss:3.4440 train_time:151070ms step_avg:161.74ms step:945/1875 train_loss:3.4653 train_time:151237ms step_avg:161.75ms step:946/1875 train_loss:5.0975 train_time:151401ms step_avg:161.75ms step:947/1875 train_loss:3.6352 train_time:151560ms step_avg:161.75ms step:948/1875 train_loss:3.5257 train_time:151722ms step_avg:161.75ms step:949/1875 train_loss:3.4175 train_time:152048ms step_avg:161.93ms step:950/1875 train_loss:3.4829 train_time:152206ms step_avg:161.92ms step:951/1875 train_loss:3.4517 train_time:152367ms step_avg:161.92ms step:952/1875 train_loss:3.5123 train_time:152527ms step_avg:161.92ms step:953/1875 train_loss:3.6077 train_time:152688ms step_avg:161.92ms step:954/1875 train_loss:3.4797 train_time:152851ms step_avg:161.92ms step:955/1875 train_loss:3.5141 train_time:153011ms step_avg:161.92ms step:956/1875 train_loss:3.4876 train_time:153170ms step_avg:161.91ms step:957/1875 train_loss:3.5419 train_time:153333ms step_avg:161.91ms step:958/1875 train_loss:3.5471 train_time:153494ms step_avg:161.91ms step:959/1875 train_loss:3.5492 train_time:153653ms step_avg:161.91ms step:960/1875 train_loss:3.4400 train_time:153816ms step_avg:161.91ms step:961/1875 train_loss:3.6908 train_time:153973ms step_avg:161.91ms step:962/1875 train_loss:3.6435 train_time:154131ms step_avg:161.90ms step:963/1875 train_loss:3.6051 train_time:154293ms step_avg:161.90ms step:964/1875 train_loss:3.4654 train_time:154454ms step_avg:161.90ms step:965/1875 train_loss:3.5195 train_time:154610ms step_avg:161.90ms step:966/1875 train_loss:3.7608 train_time:154770ms step_avg:161.89ms step:967/1875 train_loss:3.5678 train_time:154930ms step_avg:161.89ms step:968/1875 train_loss:3.5614 train_time:155089ms step_avg:161.89ms step:969/1875 train_loss:3.6303 train_time:155249ms step_avg:161.89ms step:970/1875 train_loss:3.4150 train_time:155407ms step_avg:161.88ms step:971/1875 train_loss:3.5766 train_time:155567ms step_avg:161.88ms step:972/1875 train_loss:3.5206 train_time:155725ms step_avg:161.88ms step:973/1875 train_loss:3.5836 train_time:155886ms step_avg:161.87ms step:974/1875 train_loss:3.6351 train_time:156047ms step_avg:161.87ms step:975/1875 train_loss:3.5174 train_time:156207ms step_avg:161.87ms step:976/1875 train_loss:3.7153 train_time:156364ms step_avg:161.87ms step:977/1875 train_loss:3.6175 train_time:156525ms step_avg:161.87ms step:978/1875 train_loss:3.4094 train_time:156686ms step_avg:161.87ms step:979/1875 train_loss:3.6769 train_time:156845ms step_avg:161.86ms step:980/1875 train_loss:3.4600 train_time:157008ms step_avg:161.86ms step:981/1875 train_loss:3.6178 train_time:157171ms step_avg:161.87ms step:982/1875 train_loss:3.5964 train_time:157330ms step_avg:161.86ms step:983/1875 train_loss:3.5673 train_time:157492ms step_avg:161.86ms step:984/1875 train_loss:3.5408 train_time:157651ms step_avg:161.86ms step:985/1875 train_loss:3.6271 train_time:157812ms step_avg:161.86ms step:986/1875 train_loss:3.4605 train_time:157971ms step_avg:161.86ms step:987/1875 train_loss:3.5334 train_time:158129ms step_avg:161.85ms step:988/1875 train_loss:3.5599 train_time:158290ms step_avg:161.85ms step:989/1875 train_loss:3.4609 train_time:158448ms step_avg:161.85ms step:990/1875 train_loss:3.7017 train_time:158610ms step_avg:161.85ms step:991/1875 train_loss:3.5171 train_time:158768ms step_avg:161.84ms step:992/1875 train_loss:3.4844 train_time:158932ms step_avg:161.84ms step:993/1875 train_loss:3.5539 train_time:159095ms step_avg:161.85ms step:994/1875 train_loss:3.6453 train_time:159250ms step_avg:161.84ms step:995/1875 train_loss:3.5886 train_time:159410ms step_avg:161.84ms step:996/1875 train_loss:3.5033 train_time:159568ms step_avg:161.83ms step:997/1875 train_loss:3.8183 train_time:159727ms step_avg:161.83ms step:998/1875 train_loss:3.4945 train_time:159885ms step_avg:161.83ms step:999/1875 train_loss:3.6397 train_time:160045ms step_avg:161.82ms step:1000/1875 train_loss:3.4950 train_time:160207ms step_avg:161.83ms step:1000/1875 val_loss:3.5195 train_time:160251ms step_avg:161.87ms step:1001/1875 train_loss:3.5491 train_time:160370ms step_avg:161.83ms step:1002/1875 train_loss:3.4293 train_time:160532ms step_avg:161.83ms step:1003/1875 train_loss:3.6160 train_time:160696ms step_avg:161.83ms step:1004/1875 train_loss:3.6612 train_time:160857ms step_avg:161.83ms step:1005/1875 train_loss:3.4438 train_time:161015ms step_avg:161.82ms step:1006/1875 train_loss:3.5127 train_time:161177ms step_avg:161.82ms step:1007/1875 train_loss:3.4959 train_time:161336ms step_avg:161.82ms step:1008/1875 train_loss:3.6121 train_time:161497ms step_avg:161.82ms step:1009/1875 train_loss:3.7229 train_time:161659ms step_avg:161.82ms step:1010/1875 train_loss:3.6098 train_time:161817ms step_avg:161.82ms step:1011/1875 train_loss:3.5848 train_time:161976ms step_avg:161.81ms step:1012/1875 train_loss:3.4455 train_time:162136ms step_avg:161.81ms step:1013/1875 train_loss:3.5845 train_time:162297ms step_avg:161.81ms step:1014/1875 train_loss:3.6803 train_time:162458ms step_avg:161.81ms step:1015/1875 train_loss:3.3832 train_time:162620ms step_avg:161.81ms step:1016/1875 train_loss:3.4631 train_time:162778ms step_avg:161.81ms step:1017/1875 train_loss:3.4591 train_time:162941ms step_avg:161.81ms step:1018/1875 train_loss:3.4485 train_time:163102ms step_avg:161.81ms step:1019/1875 train_loss:3.5739 train_time:163262ms step_avg:161.81ms step:1020/1875 train_loss:3.4509 train_time:163423ms step_avg:161.81ms step:1021/1875 train_loss:3.4095 train_time:163582ms step_avg:161.80ms step:1022/1875 train_loss:3.5293 train_time:163741ms step_avg:161.80ms step:1023/1875 train_loss:3.5623 train_time:163901ms step_avg:161.80ms step:1024/1875 train_loss:3.5337 train_time:164061ms step_avg:161.80ms step:1025/1875 train_loss:3.5408 train_time:164222ms step_avg:161.79ms step:1026/1875 train_loss:3.6859 train_time:164379ms step_avg:161.79ms step:1027/1875 train_loss:3.3776 train_time:164539ms step_avg:161.79ms step:1028/1875 train_loss:3.4427 train_time:164701ms step_avg:161.79ms step:1029/1875 train_loss:3.3747 train_time:164862ms step_avg:161.79ms step:1030/1875 train_loss:3.5890 train_time:165022ms step_avg:161.79ms step:1031/1875 train_loss:3.5715 train_time:165181ms step_avg:161.78ms step:1032/1875 train_loss:3.7600 train_time:165343ms step_avg:161.78ms step:1033/1875 train_loss:3.5514 train_time:165502ms step_avg:161.78ms step:1034/1875 train_loss:3.4680 train_time:165661ms step_avg:161.78ms step:1035/1875 train_loss:3.5036 train_time:165822ms step_avg:161.78ms step:1036/1875 train_loss:3.5445 train_time:165982ms step_avg:161.78ms step:1037/1875 train_loss:3.8550 train_time:166141ms step_avg:161.77ms step:1038/1875 train_loss:3.6822 train_time:166302ms step_avg:161.77ms step:1039/1875 train_loss:3.5669 train_time:166464ms step_avg:161.77ms step:1040/1875 train_loss:3.4710 train_time:166623ms step_avg:161.77ms step:1041/1875 train_loss:3.5486 train_time:166783ms step_avg:161.77ms step:1042/1875 train_loss:3.5841 train_time:166941ms step_avg:161.76ms step:1043/1875 train_loss:3.5020 train_time:167098ms step_avg:161.76ms step:1044/1875 train_loss:3.5153 train_time:167258ms step_avg:161.76ms step:1045/1875 train_loss:3.5800 train_time:167421ms step_avg:161.76ms step:1046/1875 train_loss:3.4897 train_time:167579ms step_avg:161.76ms step:1047/1875 train_loss:3.7022 train_time:167739ms step_avg:161.75ms step:1048/1875 train_loss:3.5598 train_time:167899ms step_avg:161.75ms step:1049/1875 train_loss:3.4625 train_time:168057ms step_avg:161.75ms step:1050/1875 train_loss:3.4518 train_time:168219ms step_avg:161.75ms step:1051/1875 train_loss:3.5619 train_time:168379ms step_avg:161.75ms step:1052/1875 train_loss:3.4204 train_time:168541ms step_avg:161.75ms step:1053/1875 train_loss:3.7548 train_time:168702ms step_avg:161.75ms step:1054/1875 train_loss:3.6077 train_time:168861ms step_avg:161.74ms step:1055/1875 train_loss:3.4411 train_time:169019ms step_avg:161.74ms step:1056/1875 train_loss:3.5642 train_time:169177ms step_avg:161.74ms step:1057/1875 train_loss:3.6425 train_time:169336ms step_avg:161.73ms step:1058/1875 train_loss:3.3687 train_time:169496ms step_avg:161.73ms step:1059/1875 train_loss:3.4349 train_time:169659ms step_avg:161.73ms step:1060/1875 train_loss:3.5045 train_time:169817ms step_avg:161.73ms step:1061/1875 train_loss:3.4835 train_time:169977ms step_avg:161.73ms step:1062/1875 train_loss:3.4499 train_time:170136ms step_avg:161.73ms step:1063/1875 train_loss:3.5360 train_time:170296ms step_avg:161.72ms step:1064/1875 train_loss:3.4479 train_time:170456ms step_avg:161.72ms step:1065/1875 train_loss:3.4303 train_time:170616ms step_avg:161.72ms step:1066/1875 train_loss:3.4736 train_time:170776ms step_avg:161.72ms step:1067/1875 train_loss:3.3476 train_time:170939ms step_avg:161.72ms step:1068/1875 train_loss:3.4986 train_time:171096ms step_avg:161.72ms step:1069/1875 train_loss:3.3682 train_time:171258ms step_avg:161.72ms step:1070/1875 train_loss:3.6304 train_time:171418ms step_avg:161.72ms step:1071/1875 train_loss:3.5719 train_time:171580ms step_avg:161.72ms step:1072/1875 train_loss:3.5080 train_time:171738ms step_avg:161.71ms step:1073/1875 train_loss:3.5952 train_time:171897ms step_avg:161.71ms step:1074/1875 train_loss:3.5100 train_time:172057ms step_avg:161.71ms step:1075/1875 train_loss:3.4611 train_time:172217ms step_avg:161.71ms step:1076/1875 train_loss:3.8651 train_time:172377ms step_avg:161.70ms step:1077/1875 train_loss:3.5069 train_time:172536ms step_avg:161.70ms step:1078/1875 train_loss:3.1536 train_time:172701ms step_avg:161.71ms step:1079/1875 train_loss:3.5963 train_time:172861ms step_avg:161.70ms step:1080/1875 train_loss:3.5024 train_time:173022ms step_avg:161.70ms step:1081/1875 train_loss:3.5767 train_time:173180ms step_avg:161.70ms step:1082/1875 train_loss:3.6629 train_time:173339ms step_avg:161.70ms step:1083/1875 train_loss:3.5704 train_time:173500ms step_avg:161.70ms step:1084/1875 train_loss:3.5445 train_time:173659ms step_avg:161.69ms step:1085/1875 train_loss:3.4977 train_time:173818ms step_avg:161.69ms step:1086/1875 train_loss:3.7041 train_time:173980ms step_avg:161.69ms step:1087/1875 train_loss:3.5853 train_time:174139ms step_avg:161.69ms step:1088/1875 train_loss:3.4343 train_time:174300ms step_avg:161.69ms step:1089/1875 train_loss:3.4476 train_time:174461ms step_avg:161.69ms step:1090/1875 train_loss:3.5546 train_time:174623ms step_avg:161.69ms step:1091/1875 train_loss:3.3550 train_time:174783ms step_avg:161.69ms step:1092/1875 train_loss:3.5628 train_time:174943ms step_avg:161.68ms step:1093/1875 train_loss:3.6825 train_time:175102ms step_avg:161.68ms step:1094/1875 train_loss:3.5173 train_time:175261ms step_avg:161.68ms step:1095/1875 train_loss:3.4869 train_time:175421ms step_avg:161.68ms step:1096/1875 train_loss:3.5038 train_time:175580ms step_avg:161.68ms step:1097/1875 train_loss:3.5628 train_time:175742ms step_avg:161.68ms step:1098/1875 train_loss:3.6365 train_time:175903ms step_avg:161.68ms step:1099/1875 train_loss:3.5981 train_time:176062ms step_avg:161.67ms step:1100/1875 train_loss:3.5204 train_time:176223ms step_avg:161.67ms step:1101/1875 train_loss:3.3587 train_time:176383ms step_avg:161.67ms step:1102/1875 train_loss:3.4051 train_time:176544ms step_avg:161.67ms step:1103/1875 train_loss:3.5250 train_time:176706ms step_avg:161.67ms step:1104/1875 train_loss:3.3909 train_time:176864ms step_avg:161.67ms step:1105/1875 train_loss:4.1385 train_time:177024ms step_avg:161.67ms step:1106/1875 train_loss:3.3056 train_time:177182ms step_avg:161.66ms step:1107/1875 train_loss:3.6369 train_time:177340ms step_avg:161.66ms step:1108/1875 train_loss:3.4209 train_time:177498ms step_avg:161.66ms step:1109/1875 train_loss:3.5788 train_time:177658ms step_avg:161.65ms step:1110/1875 train_loss:3.4993 train_time:177816ms step_avg:161.65ms step:1111/1875 train_loss:3.5560 train_time:177974ms step_avg:161.65ms step:1112/1875 train_loss:3.6307 train_time:178135ms step_avg:161.65ms step:1113/1875 train_loss:3.5154 train_time:178300ms step_avg:161.65ms step:1114/1875 train_loss:3.4376 train_time:178461ms step_avg:161.65ms step:1115/1875 train_loss:3.3272 train_time:178624ms step_avg:161.65ms step:1116/1875 train_loss:3.5036 train_time:178781ms step_avg:161.65ms step:1117/1875 train_loss:3.6706 train_time:178941ms step_avg:161.64ms step:1118/1875 train_loss:3.7059 train_time:179101ms step_avg:161.64ms step:1119/1875 train_loss:3.5530 train_time:179259ms step_avg:161.64ms step:1120/1875 train_loss:3.5667 train_time:179420ms step_avg:161.64ms step:1121/1875 train_loss:3.4659 train_time:179581ms step_avg:161.64ms step:1122/1875 train_loss:3.5352 train_time:179740ms step_avg:161.64ms step:1123/1875 train_loss:3.6624 train_time:179899ms step_avg:161.63ms step:1124/1875 train_loss:3.4245 train_time:180058ms step_avg:161.63ms step:1125/1875 train_loss:3.2926 train_time:180219ms step_avg:161.63ms step:1125/1875 val_loss:3.4905 train_time:180260ms step_avg:161.67ms step:1126/1875 train_loss:3.5580 train_time:180380ms step_avg:161.63ms step:1127/1875 train_loss:3.7636 train_time:180544ms step_avg:161.63ms step:1128/1875 train_loss:3.3103 train_time:180707ms step_avg:161.63ms step:1129/1875 train_loss:3.6413 train_time:180869ms step_avg:161.63ms step:1130/1875 train_loss:3.4651 train_time:181031ms step_avg:161.63ms step:1131/1875 train_loss:3.4727 train_time:181194ms step_avg:161.64ms step:1132/1875 train_loss:3.4387 train_time:181351ms step_avg:161.63ms step:1133/1875 train_loss:3.5828 train_time:181678ms step_avg:161.78ms step:1134/1875 train_loss:3.5373 train_time:181844ms step_avg:161.78ms step:1135/1875 train_loss:3.6060 train_time:182004ms step_avg:161.78ms step:1136/1875 train_loss:3.6402 train_time:182165ms step_avg:161.78ms step:1137/1875 train_loss:3.5404 train_time:182324ms step_avg:161.78ms step:1138/1875 train_loss:3.4359 train_time:182485ms step_avg:161.78ms step:1139/1875 train_loss:3.7387 train_time:182847ms step_avg:161.95ms step:1140/1875 train_loss:3.5483 train_time:183016ms step_avg:161.96ms step:1141/1875 train_loss:3.6788 train_time:183177ms step_avg:161.96ms step:1142/1875 train_loss:3.5375 train_time:183335ms step_avg:161.96ms step:1143/1875 train_loss:3.4455 train_time:183494ms step_avg:161.95ms step:1144/1875 train_loss:3.5339 train_time:183653ms step_avg:161.95ms step:1145/1875 train_loss:3.6767 train_time:183810ms step_avg:161.95ms step:1146/1875 train_loss:3.6362 train_time:183970ms step_avg:161.95ms step:1147/1875 train_loss:3.5999 train_time:184129ms step_avg:161.94ms step:1148/1875 train_loss:3.5791 train_time:184290ms step_avg:161.94ms step:1149/1875 train_loss:3.4194 train_time:184449ms step_avg:161.94ms step:1150/1875 train_loss:3.4550 train_time:184609ms step_avg:161.94ms step:1151/1875 train_loss:3.4084 train_time:184770ms step_avg:161.94ms step:1152/1875 train_loss:3.4944 train_time:184932ms step_avg:161.94ms step:1153/1875 train_loss:3.5140 train_time:185092ms step_avg:161.94ms step:1154/1875 train_loss:3.6073 train_time:185249ms step_avg:161.93ms step:1155/1875 train_loss:3.4103 train_time:185410ms step_avg:161.93ms step:1156/1875 train_loss:3.6219 train_time:185571ms step_avg:161.93ms step:1157/1875 train_loss:3.5898 train_time:185731ms step_avg:161.93ms step:1158/1875 train_loss:3.3556 train_time:185890ms step_avg:161.93ms step:1159/1875 train_loss:3.4281 train_time:186050ms step_avg:161.92ms step:1160/1875 train_loss:3.4210 train_time:186208ms step_avg:161.92ms step:1161/1875 train_loss:3.1811 train_time:186368ms step_avg:161.92ms step:1162/1875 train_loss:3.5075 train_time:186527ms step_avg:161.92ms step:1163/1875 train_loss:3.4753 train_time:186688ms step_avg:161.91ms step:1164/1875 train_loss:3.3725 train_time:186847ms step_avg:161.91ms step:1165/1875 train_loss:3.3448 train_time:187005ms step_avg:161.91ms step:1166/1875 train_loss:3.4695 train_time:187166ms step_avg:161.91ms step:1167/1875 train_loss:3.4882 train_time:187326ms step_avg:161.91ms step:1168/1875 train_loss:3.8063 train_time:187484ms step_avg:161.90ms step:1169/1875 train_loss:3.4673 train_time:187644ms step_avg:161.90ms step:1170/1875 train_loss:3.4818 train_time:187805ms step_avg:161.90ms step:1171/1875 train_loss:3.4010 train_time:187963ms step_avg:161.90ms step:1172/1875 train_loss:3.5068 train_time:188123ms step_avg:161.90ms step:1173/1875 train_loss:3.6317 train_time:188285ms step_avg:161.90ms step:1174/1875 train_loss:3.4714 train_time:188450ms step_avg:161.90ms step:1175/1875 train_loss:3.4682 train_time:188611ms step_avg:161.90ms step:1176/1875 train_loss:3.5145 train_time:188771ms step_avg:161.90ms step:1177/1875 train_loss:3.5379 train_time:188933ms step_avg:161.90ms step:1178/1875 train_loss:3.5883 train_time:189091ms step_avg:161.89ms step:1179/1875 train_loss:3.4983 train_time:189248ms step_avg:161.89ms step:1180/1875 train_loss:3.4434 train_time:189412ms step_avg:161.89ms step:1181/1875 train_loss:3.4273 train_time:189571ms step_avg:161.89ms step:1182/1875 train_loss:3.4815 train_time:189731ms step_avg:161.89ms step:1183/1875 train_loss:3.4215 train_time:189889ms step_avg:161.88ms step:1184/1875 train_loss:3.5994 train_time:190048ms step_avg:161.88ms step:1185/1875 train_loss:3.6380 train_time:190211ms step_avg:161.88ms step:1186/1875 train_loss:3.4520 train_time:190371ms step_avg:161.88ms step:1187/1875 train_loss:3.5075 train_time:190535ms step_avg:161.88ms step:1188/1875 train_loss:3.5367 train_time:190692ms step_avg:161.88ms step:1189/1875 train_loss:3.3618 train_time:190854ms step_avg:161.88ms step:1190/1875 train_loss:3.5395 train_time:191015ms step_avg:161.88ms step:1191/1875 train_loss:3.6729 train_time:191176ms step_avg:161.88ms step:1192/1875 train_loss:3.4850 train_time:191334ms step_avg:161.87ms step:1193/1875 train_loss:3.3665 train_time:191492ms step_avg:161.87ms step:1194/1875 train_loss:3.6528 train_time:191652ms step_avg:161.87ms step:1195/1875 train_loss:3.4686 train_time:191814ms step_avg:161.87ms step:1196/1875 train_loss:3.4763 train_time:191976ms step_avg:161.87ms step:1197/1875 train_loss:3.3802 train_time:192137ms step_avg:161.87ms step:1198/1875 train_loss:3.3967 train_time:192300ms step_avg:161.87ms step:1199/1875 train_loss:3.4357 train_time:192460ms step_avg:161.87ms step:1200/1875 train_loss:3.5350 train_time:192618ms step_avg:161.86ms step:1201/1875 train_loss:3.5823 train_time:192778ms step_avg:161.86ms step:1202/1875 train_loss:3.6976 train_time:192943ms step_avg:161.87ms step:1203/1875 train_loss:3.4999 train_time:193103ms step_avg:161.86ms step:1204/1875 train_loss:3.4119 train_time:193265ms step_avg:161.86ms step:1205/1875 train_loss:3.5278 train_time:193424ms step_avg:161.86ms step:1206/1875 train_loss:3.5644 train_time:193584ms step_avg:161.86ms step:1207/1875 train_loss:3.6176 train_time:193745ms step_avg:161.86ms step:1208/1875 train_loss:3.4928 train_time:193904ms step_avg:161.86ms step:1209/1875 train_loss:3.3362 train_time:194066ms step_avg:161.86ms step:1210/1875 train_loss:3.4009 train_time:194226ms step_avg:161.86ms step:1211/1875 train_loss:3.4969 train_time:194386ms step_avg:161.85ms step:1212/1875 train_loss:3.4887 train_time:194547ms step_avg:161.85ms step:1213/1875 train_loss:3.5130 train_time:194706ms step_avg:161.85ms step:1214/1875 train_loss:3.3751 train_time:194867ms step_avg:161.85ms step:1215/1875 train_loss:3.4901 train_time:195028ms step_avg:161.85ms step:1216/1875 train_loss:3.4263 train_time:195188ms step_avg:161.85ms step:1217/1875 train_loss:3.4250 train_time:195347ms step_avg:161.85ms step:1218/1875 train_loss:3.5114 train_time:195509ms step_avg:161.85ms step:1219/1875 train_loss:3.3706 train_time:195672ms step_avg:161.85ms step:1220/1875 train_loss:3.5783 train_time:195831ms step_avg:161.84ms step:1221/1875 train_loss:3.6082 train_time:195990ms step_avg:161.84ms step:1222/1875 train_loss:3.5408 train_time:196148ms step_avg:161.84ms step:1223/1875 train_loss:3.3899 train_time:196308ms step_avg:161.84ms step:1224/1875 train_loss:3.3603 train_time:196469ms step_avg:161.84ms step:1225/1875 train_loss:3.4673 train_time:196629ms step_avg:161.83ms step:1226/1875 train_loss:3.4312 train_time:196791ms step_avg:161.83ms step:1227/1875 train_loss:3.3669 train_time:196951ms step_avg:161.83ms step:1228/1875 train_loss:3.5475 train_time:197109ms step_avg:161.83ms step:1229/1875 train_loss:3.4737 train_time:197270ms step_avg:161.83ms step:1230/1875 train_loss:3.5085 train_time:197433ms step_avg:161.83ms step:1231/1875 train_loss:3.6830 train_time:197593ms step_avg:161.83ms step:1232/1875 train_loss:3.5933 train_time:197753ms step_avg:161.83ms step:1233/1875 train_loss:3.5261 train_time:197913ms step_avg:161.83ms step:1234/1875 train_loss:3.6864 train_time:198072ms step_avg:161.82ms step:1235/1875 train_loss:3.4316 train_time:198233ms step_avg:161.82ms step:1236/1875 train_loss:3.3952 train_time:198391ms step_avg:161.82ms step:1237/1875 train_loss:3.3724 train_time:198551ms step_avg:161.82ms step:1238/1875 train_loss:3.4010 train_time:198715ms step_avg:161.82ms step:1239/1875 train_loss:3.4260 train_time:198874ms step_avg:161.82ms step:1240/1875 train_loss:3.4845 train_time:199035ms step_avg:161.82ms step:1241/1875 train_loss:3.5251 train_time:199195ms step_avg:161.82ms step:1242/1875 train_loss:3.4033 train_time:199356ms step_avg:161.82ms step:1243/1875 train_loss:3.5132 train_time:199518ms step_avg:161.82ms step:1244/1875 train_loss:3.5160 train_time:199676ms step_avg:161.81ms step:1245/1875 train_loss:3.5220 train_time:199837ms step_avg:161.81ms step:1246/1875 train_loss:3.3389 train_time:199996ms step_avg:161.81ms step:1247/1875 train_loss:3.4866 train_time:200156ms step_avg:161.81ms step:1248/1875 train_loss:3.5503 train_time:200316ms step_avg:161.81ms step:1249/1875 train_loss:3.5237 train_time:200474ms step_avg:161.80ms step:1250/1875 train_loss:3.4088 train_time:200633ms step_avg:161.80ms step:1250/1875 val_loss:3.4625 train_time:200677ms step_avg:161.84ms step:1251/1875 train_loss:3.6032 train_time:200798ms step_avg:161.80ms step:1252/1875 train_loss:3.4807 train_time:200956ms step_avg:161.80ms step:1253/1875 train_loss:3.4147 train_time:201116ms step_avg:161.80ms step:1254/1875 train_loss:3.5224 train_time:201276ms step_avg:161.80ms step:1255/1875 train_loss:3.6260 train_time:201441ms step_avg:161.80ms step:1256/1875 train_loss:3.4181 train_time:201601ms step_avg:161.80ms step:1257/1875 train_loss:3.4688 train_time:201760ms step_avg:161.80ms step:1258/1875 train_loss:3.4673 train_time:201926ms step_avg:161.80ms step:1259/1875 train_loss:3.4476 train_time:202086ms step_avg:161.80ms step:1260/1875 train_loss:3.3126 train_time:202244ms step_avg:161.80ms step:1261/1875 train_loss:3.4087 train_time:202406ms step_avg:161.80ms step:1262/1875 train_loss:3.4390 train_time:202568ms step_avg:161.80ms step:1263/1875 train_loss:3.3379 train_time:202732ms step_avg:161.80ms step:1264/1875 train_loss:3.5575 train_time:202890ms step_avg:161.79ms step:1265/1875 train_loss:3.5398 train_time:203048ms step_avg:161.79ms step:1266/1875 train_loss:3.5536 train_time:203209ms step_avg:161.79ms step:1267/1875 train_loss:3.4779 train_time:203369ms step_avg:161.79ms step:1268/1875 train_loss:3.5109 train_time:203530ms step_avg:161.79ms step:1269/1875 train_loss:3.3672 train_time:203693ms step_avg:161.79ms step:1270/1875 train_loss:3.2047 train_time:203851ms step_avg:161.79ms step:1271/1875 train_loss:3.5083 train_time:204010ms step_avg:161.78ms step:1272/1875 train_loss:3.4574 train_time:204168ms step_avg:161.78ms step:1273/1875 train_loss:3.5071 train_time:204330ms step_avg:161.78ms step:1274/1875 train_loss:3.4661 train_time:204492ms step_avg:161.78ms step:1275/1875 train_loss:3.5483 train_time:204651ms step_avg:161.78ms step:1276/1875 train_loss:3.5889 train_time:204809ms step_avg:161.78ms step:1277/1875 train_loss:3.5214 train_time:204969ms step_avg:161.78ms step:1278/1875 train_loss:3.5109 train_time:205127ms step_avg:161.77ms step:1279/1875 train_loss:3.3678 train_time:205289ms step_avg:161.77ms step:1280/1875 train_loss:3.4826 train_time:205451ms step_avg:161.77ms step:1281/1875 train_loss:3.5312 train_time:205610ms step_avg:161.77ms step:1282/1875 train_loss:3.5818 train_time:205768ms step_avg:161.77ms step:1283/1875 train_loss:3.4474 train_time:205928ms step_avg:161.77ms step:1284/1875 train_loss:3.4827 train_time:206087ms step_avg:161.76ms step:1285/1875 train_loss:3.4778 train_time:206248ms step_avg:161.76ms step:1286/1875 train_loss:3.4476 train_time:206407ms step_avg:161.76ms step:1287/1875 train_loss:3.6010 train_time:206567ms step_avg:161.76ms step:1288/1875 train_loss:3.4165 train_time:206727ms step_avg:161.76ms step:1289/1875 train_loss:3.5019 train_time:206890ms step_avg:161.76ms step:1290/1875 train_loss:3.5718 train_time:207053ms step_avg:161.76ms step:1291/1875 train_loss:3.4922 train_time:207213ms step_avg:161.76ms step:1292/1875 train_loss:3.5879 train_time:207374ms step_avg:161.76ms step:1293/1875 train_loss:3.6318 train_time:207535ms step_avg:161.76ms step:1294/1875 train_loss:3.5862 train_time:207695ms step_avg:161.76ms step:1295/1875 train_loss:3.4016 train_time:207853ms step_avg:161.75ms step:1296/1875 train_loss:3.4826 train_time:208015ms step_avg:161.75ms step:1297/1875 train_loss:3.3889 train_time:208175ms step_avg:161.75ms step:1298/1875 train_loss:3.3991 train_time:208336ms step_avg:161.75ms step:1299/1875 train_loss:3.5077 train_time:208494ms step_avg:161.75ms step:1300/1875 train_loss:3.5179 train_time:208651ms step_avg:161.75ms step:1301/1875 train_loss:3.5217 train_time:208810ms step_avg:161.74ms step:1302/1875 train_loss:3.6865 train_time:208972ms step_avg:161.74ms step:1303/1875 train_loss:3.4209 train_time:209134ms step_avg:161.74ms step:1304/1875 train_loss:3.6391 train_time:209294ms step_avg:161.74ms step:1305/1875 train_loss:3.3869 train_time:209451ms step_avg:161.74ms step:1306/1875 train_loss:3.5602 train_time:209612ms step_avg:161.74ms step:1307/1875 train_loss:3.5765 train_time:209770ms step_avg:161.73ms step:1308/1875 train_loss:3.4114 train_time:209930ms step_avg:161.73ms step:1309/1875 train_loss:3.4168 train_time:210091ms step_avg:161.73ms step:1310/1875 train_loss:3.4391 train_time:210251ms step_avg:161.73ms step:1311/1875 train_loss:3.4114 train_time:210411ms step_avg:161.73ms step:1312/1875 train_loss:3.5057 train_time:210572ms step_avg:161.73ms step:1313/1875 train_loss:3.4588 train_time:210731ms step_avg:161.73ms step:1314/1875 train_loss:3.1602 train_time:210893ms step_avg:161.73ms step:1315/1875 train_loss:3.3956 train_time:211051ms step_avg:161.73ms step:1316/1875 train_loss:3.5073 train_time:211210ms step_avg:161.72ms step:1317/1875 train_loss:3.5387 train_time:211369ms step_avg:161.72ms step:1318/1875 train_loss:3.4083 train_time:211533ms step_avg:161.72ms step:1319/1875 train_loss:3.5483 train_time:211693ms step_avg:161.72ms step:1320/1875 train_loss:3.5713 train_time:211854ms step_avg:161.72ms step:1321/1875 train_loss:3.4845 train_time:212014ms step_avg:161.72ms step:1322/1875 train_loss:3.4372 train_time:212344ms step_avg:161.85ms step:1323/1875 train_loss:3.4491 train_time:212513ms step_avg:161.85ms step:1324/1875 train_loss:3.5560 train_time:212674ms step_avg:161.85ms step:1325/1875 train_loss:3.6111 train_time:212835ms step_avg:161.85ms step:1326/1875 train_loss:3.3490 train_time:212993ms step_avg:161.85ms step:1327/1875 train_loss:3.2798 train_time:213152ms step_avg:161.85ms step:1328/1875 train_loss:3.6028 train_time:213311ms step_avg:161.84ms step:1329/1875 train_loss:3.4206 train_time:213653ms step_avg:161.98ms step:1330/1875 train_loss:3.5434 train_time:213813ms step_avg:161.98ms step:1331/1875 train_loss:3.4554 train_time:213971ms step_avg:161.98ms step:1332/1875 train_loss:3.8650 train_time:214133ms step_avg:161.98ms step:1333/1875 train_loss:3.5834 train_time:214292ms step_avg:161.97ms step:1334/1875 train_loss:3.4869 train_time:214453ms step_avg:161.97ms step:1335/1875 train_loss:3.4194 train_time:214612ms step_avg:161.97ms step:1336/1875 train_loss:3.4121 train_time:214774ms step_avg:161.97ms step:1337/1875 train_loss:3.6695 train_time:214935ms step_avg:161.97ms step:1338/1875 train_loss:3.6378 train_time:215094ms step_avg:161.97ms step:1339/1875 train_loss:3.4607 train_time:215254ms step_avg:161.97ms step:1340/1875 train_loss:3.4079 train_time:215414ms step_avg:161.97ms step:1341/1875 train_loss:3.7120 train_time:215572ms step_avg:161.96ms step:1342/1875 train_loss:3.4808 train_time:215733ms step_avg:161.96ms step:1343/1875 train_loss:3.4818 train_time:215892ms step_avg:161.96ms step:1344/1875 train_loss:3.5330 train_time:216053ms step_avg:161.96ms step:1345/1875 train_loss:3.5039 train_time:216214ms step_avg:161.96ms step:1346/1875 train_loss:3.4134 train_time:216373ms step_avg:161.96ms step:1347/1875 train_loss:3.3786 train_time:216532ms step_avg:161.95ms step:1348/1875 train_loss:3.4596 train_time:216692ms step_avg:161.95ms step:1349/1875 train_loss:3.3902 train_time:216850ms step_avg:161.95ms step:1350/1875 train_loss:3.5144 train_time:217012ms step_avg:161.95ms step:1351/1875 train_loss:3.3654 train_time:217170ms step_avg:161.95ms step:1352/1875 train_loss:3.4239 train_time:217329ms step_avg:161.94ms step:1353/1875 train_loss:3.5344 train_time:217490ms step_avg:161.94ms step:1354/1875 train_loss:3.3723 train_time:217650ms step_avg:161.94ms step:1355/1875 train_loss:3.3039 train_time:217809ms step_avg:161.94ms step:1356/1875 train_loss:3.6365 train_time:217971ms step_avg:161.94ms step:1357/1875 train_loss:3.5488 train_time:218131ms step_avg:161.94ms step:1358/1875 train_loss:3.2942 train_time:218289ms step_avg:161.94ms step:1359/1875 train_loss:3.5672 train_time:218450ms step_avg:161.93ms step:1360/1875 train_loss:3.4698 train_time:218611ms step_avg:161.93ms step:1361/1875 train_loss:3.2798 train_time:218772ms step_avg:161.93ms step:1362/1875 train_loss:3.5050 train_time:218931ms step_avg:161.93ms step:1363/1875 train_loss:3.3864 train_time:219094ms step_avg:161.93ms step:1364/1875 train_loss:3.4294 train_time:219252ms step_avg:161.93ms step:1365/1875 train_loss:3.4309 train_time:219410ms step_avg:161.93ms step:1366/1875 train_loss:3.5474 train_time:219571ms step_avg:161.93ms step:1367/1875 train_loss:3.5096 train_time:219730ms step_avg:161.92ms step:1368/1875 train_loss:3.4692 train_time:219889ms step_avg:161.92ms step:1369/1875 train_loss:3.3782 train_time:220052ms step_avg:161.92ms step:1370/1875 train_loss:3.7232 train_time:220211ms step_avg:161.92ms step:1371/1875 train_loss:3.4329 train_time:220371ms step_avg:161.92ms step:1372/1875 train_loss:3.4833 train_time:220531ms step_avg:161.92ms step:1373/1875 train_loss:3.4809 train_time:220690ms step_avg:161.92ms step:1374/1875 train_loss:3.2772 train_time:220851ms step_avg:161.91ms step:1375/1875 train_loss:3.6710 train_time:221010ms step_avg:161.91ms step:1375/1875 val_loss:3.4321 train_time:221051ms step_avg:161.94ms step:1376/1875 train_loss:3.4614 train_time:221170ms step_avg:161.91ms step:1377/1875 train_loss:3.5984 train_time:221333ms step_avg:161.91ms step:1378/1875 train_loss:3.6147 train_time:221493ms step_avg:161.91ms step:1379/1875 train_loss:3.2734 train_time:221654ms step_avg:161.91ms step:1380/1875 train_loss:3.4379 train_time:221813ms step_avg:161.91ms step:1381/1875 train_loss:3.8416 train_time:221976ms step_avg:161.91ms step:1382/1875 train_loss:3.3431 train_time:222135ms step_avg:161.91ms step:1383/1875 train_loss:3.5147 train_time:222295ms step_avg:161.90ms step:1384/1875 train_loss:3.5996 train_time:222459ms step_avg:161.91ms step:1385/1875 train_loss:3.5164 train_time:222617ms step_avg:161.90ms step:1386/1875 train_loss:3.4848 train_time:222777ms step_avg:161.90ms step:1387/1875 train_loss:3.3124 train_time:222937ms step_avg:161.90ms step:1388/1875 train_loss:3.4601 train_time:223096ms step_avg:161.90ms step:1389/1875 train_loss:3.4365 train_time:223257ms step_avg:161.90ms step:1390/1875 train_loss:3.6998 train_time:223416ms step_avg:161.90ms step:1391/1875 train_loss:3.4070 train_time:223576ms step_avg:161.89ms step:1392/1875 train_loss:3.4082 train_time:223737ms step_avg:161.89ms step:1393/1875 train_loss:3.3646 train_time:223897ms step_avg:161.89ms step:1394/1875 train_loss:3.6299 train_time:224056ms step_avg:161.89ms step:1395/1875 train_loss:3.5194 train_time:224215ms step_avg:161.89ms step:1396/1875 train_loss:3.5283 train_time:224375ms step_avg:161.89ms step:1397/1875 train_loss:3.4210 train_time:224534ms step_avg:161.88ms step:1398/1875 train_loss:3.3694 train_time:224692ms step_avg:161.88ms step:1399/1875 train_loss:3.4468 train_time:224852ms step_avg:161.88ms step:1400/1875 train_loss:3.4289 train_time:225014ms step_avg:161.88ms step:1401/1875 train_loss:3.4540 train_time:225173ms step_avg:161.88ms step:1402/1875 train_loss:3.4143 train_time:225336ms step_avg:161.88ms step:1403/1875 train_loss:3.6207 train_time:225499ms step_avg:161.88ms step:1404/1875 train_loss:3.3920 train_time:225657ms step_avg:161.88ms step:1405/1875 train_loss:3.4258 train_time:225819ms step_avg:161.88ms step:1406/1875 train_loss:3.4228 train_time:225978ms step_avg:161.88ms step:1407/1875 train_loss:3.2865 train_time:226136ms step_avg:161.87ms step:1408/1875 train_loss:3.4130 train_time:226295ms step_avg:161.87ms step:1409/1875 train_loss:3.4063 train_time:226457ms step_avg:161.87ms step:1410/1875 train_loss:3.3951 train_time:226617ms step_avg:161.87ms step:1411/1875 train_loss:3.4787 train_time:226775ms step_avg:161.87ms step:1412/1875 train_loss:3.4351 train_time:226935ms step_avg:161.87ms step:1413/1875 train_loss:3.4667 train_time:227094ms step_avg:161.86ms step:1414/1875 train_loss:3.4513 train_time:227254ms step_avg:161.86ms step:1415/1875 train_loss:3.5318 train_time:227416ms step_avg:161.86ms step:1416/1875 train_loss:3.3426 train_time:227580ms step_avg:161.86ms step:1417/1875 train_loss:3.3961 train_time:227743ms step_avg:161.86ms step:1418/1875 train_loss:3.4996 train_time:227902ms step_avg:161.86ms step:1419/1875 train_loss:3.4699 train_time:228063ms step_avg:161.86ms step:1420/1875 train_loss:3.4810 train_time:228223ms step_avg:161.86ms step:1421/1875 train_loss:3.4869 train_time:228382ms step_avg:161.86ms step:1422/1875 train_loss:3.4596 train_time:228541ms step_avg:161.86ms step:1423/1875 train_loss:3.4353 train_time:228699ms step_avg:161.85ms step:1424/1875 train_loss:3.4415 train_time:228860ms step_avg:161.85ms step:1425/1875 train_loss:3.3025 train_time:229023ms step_avg:161.85ms step:1426/1875 train_loss:3.4431 train_time:229181ms step_avg:161.85ms step:1427/1875 train_loss:3.3888 train_time:229343ms step_avg:161.85ms step:1428/1875 train_loss:3.4878 train_time:229502ms step_avg:161.85ms step:1429/1875 train_loss:3.4677 train_time:229659ms step_avg:161.85ms step:1430/1875 train_loss:3.3745 train_time:229821ms step_avg:161.85ms step:1431/1875 train_loss:3.4310 train_time:229982ms step_avg:161.85ms step:1432/1875 train_loss:3.4579 train_time:230143ms step_avg:161.84ms step:1433/1875 train_loss:3.2982 train_time:230304ms step_avg:161.84ms step:1434/1875 train_loss:3.3997 train_time:230465ms step_avg:161.84ms step:1435/1875 train_loss:3.2316 train_time:230624ms step_avg:161.84ms step:1436/1875 train_loss:3.3309 train_time:230782ms step_avg:161.84ms step:1437/1875 train_loss:3.5211 train_time:230941ms step_avg:161.84ms step:1438/1875 train_loss:3.4879 train_time:231100ms step_avg:161.83ms step:1439/1875 train_loss:3.4279 train_time:231260ms step_avg:161.83ms step:1440/1875 train_loss:3.2907 train_time:231418ms step_avg:161.83ms step:1441/1875 train_loss:3.4546 train_time:231578ms step_avg:161.83ms step:1442/1875 train_loss:3.4983 train_time:231739ms step_avg:161.83ms step:1443/1875 train_loss:3.5848 train_time:231903ms step_avg:161.83ms step:1444/1875 train_loss:3.5580 train_time:232061ms step_avg:161.83ms step:1445/1875 train_loss:3.4472 train_time:232221ms step_avg:161.83ms step:1446/1875 train_loss:3.3126 train_time:232380ms step_avg:161.82ms step:1447/1875 train_loss:3.4018 train_time:232541ms step_avg:161.82ms step:1448/1875 train_loss:3.4117 train_time:232700ms step_avg:161.82ms step:1449/1875 train_loss:3.5159 train_time:232858ms step_avg:161.82ms step:1450/1875 train_loss:3.5072 train_time:233019ms step_avg:161.82ms step:1451/1875 train_loss:3.3205 train_time:233179ms step_avg:161.82ms step:1452/1875 train_loss:3.4472 train_time:233339ms step_avg:161.82ms step:1453/1875 train_loss:3.3678 train_time:233497ms step_avg:161.81ms step:1454/1875 train_loss:3.3963 train_time:233655ms step_avg:161.81ms step:1455/1875 train_loss:3.4367 train_time:233817ms step_avg:161.81ms step:1456/1875 train_loss:3.3812 train_time:233976ms step_avg:161.81ms step:1457/1875 train_loss:3.2724 train_time:234135ms step_avg:161.81ms step:1458/1875 train_loss:3.5284 train_time:234295ms step_avg:161.81ms step:1459/1875 train_loss:3.3800 train_time:234457ms step_avg:161.81ms step:1460/1875 train_loss:3.4278 train_time:234618ms step_avg:161.81ms step:1461/1875 train_loss:3.5457 train_time:234780ms step_avg:161.81ms step:1462/1875 train_loss:3.3705 train_time:234939ms step_avg:161.80ms step:1463/1875 train_loss:3.5703 train_time:235100ms step_avg:161.80ms step:1464/1875 train_loss:3.4641 train_time:235259ms step_avg:161.80ms step:1465/1875 train_loss:3.4669 train_time:235421ms step_avg:161.80ms step:1466/1875 train_loss:3.3887 train_time:235580ms step_avg:161.80ms step:1467/1875 train_loss:3.5123 train_time:235742ms step_avg:161.80ms step:1468/1875 train_loss:3.3923 train_time:235901ms step_avg:161.80ms step:1469/1875 train_loss:3.3728 train_time:236060ms step_avg:161.80ms step:1470/1875 train_loss:3.4360 train_time:236219ms step_avg:161.79ms step:1471/1875 train_loss:3.3551 train_time:236381ms step_avg:161.79ms step:1472/1875 train_loss:3.3690 train_time:236542ms step_avg:161.79ms step:1473/1875 train_loss:3.5368 train_time:236699ms step_avg:161.79ms step:1474/1875 train_loss:3.4186 train_time:236861ms step_avg:161.79ms step:1475/1875 train_loss:3.2497 train_time:237024ms step_avg:161.79ms step:1476/1875 train_loss:3.3703 train_time:237181ms step_avg:161.79ms step:1477/1875 train_loss:3.3448 train_time:237342ms step_avg:161.79ms step:1478/1875 train_loss:3.4192 train_time:237503ms step_avg:161.79ms step:1479/1875 train_loss:3.4974 train_time:237662ms step_avg:161.79ms step:1480/1875 train_loss:3.3805 train_time:237821ms step_avg:161.78ms step:1481/1875 train_loss:3.5577 train_time:237981ms step_avg:161.78ms step:1482/1875 train_loss:3.4767 train_time:238142ms step_avg:161.78ms step:1483/1875 train_loss:3.3800 train_time:238304ms step_avg:161.78ms step:1484/1875 train_loss:3.3638 train_time:238465ms step_avg:161.78ms step:1485/1875 train_loss:3.3766 train_time:238623ms step_avg:161.78ms step:1486/1875 train_loss:3.3247 train_time:238783ms step_avg:161.78ms step:1487/1875 train_loss:3.4391 train_time:238944ms step_avg:161.78ms step:1488/1875 train_loss:3.3357 train_time:239104ms step_avg:161.78ms step:1489/1875 train_loss:3.4276 train_time:239262ms step_avg:161.77ms step:1490/1875 train_loss:3.3503 train_time:239421ms step_avg:161.77ms step:1491/1875 train_loss:3.2670 train_time:239581ms step_avg:161.77ms step:1492/1875 train_loss:3.3570 train_time:239741ms step_avg:161.77ms step:1493/1875 train_loss:3.5369 train_time:239900ms step_avg:161.77ms step:1494/1875 train_loss:3.3987 train_time:240058ms step_avg:161.76ms step:1495/1875 train_loss:3.1350 train_time:240220ms step_avg:161.76ms step:1496/1875 train_loss:3.4570 train_time:240381ms step_avg:161.76ms step:1497/1875 train_loss:3.4070 train_time:240542ms step_avg:161.76ms step:1498/1875 train_loss:3.4436 train_time:240703ms step_avg:161.76ms step:1499/1875 train_loss:3.4126 train_time:240864ms step_avg:161.76ms step:1500/1875 train_loss:3.3988 train_time:241027ms step_avg:161.76ms step:1500/1875 val_loss:3.3823 train_time:241069ms step_avg:161.79ms step:1501/1875 train_loss:3.1860 train_time:241192ms step_avg:161.77ms step:1502/1875 train_loss:3.4601 train_time:241358ms step_avg:161.77ms step:1503/1875 train_loss:3.3404 train_time:241517ms step_avg:161.77ms step:1504/1875 train_loss:3.3470 train_time:241676ms step_avg:161.76ms step:1505/1875 train_loss:3.3075 train_time:241835ms step_avg:161.76ms step:1506/1875 train_loss:3.3787 train_time:241994ms step_avg:161.76ms step:1507/1875 train_loss:3.2775 train_time:242158ms step_avg:161.76ms step:1508/1875 train_loss:3.5894 train_time:242319ms step_avg:161.76ms step:1509/1875 train_loss:3.3677 train_time:242478ms step_avg:161.76ms step:1510/1875 train_loss:3.3747 train_time:242638ms step_avg:161.76ms step:1511/1875 train_loss:3.5054 train_time:242958ms step_avg:161.86ms step:1512/1875 train_loss:3.5214 train_time:243125ms step_avg:161.87ms step:1513/1875 train_loss:3.3653 train_time:243286ms step_avg:161.87ms step:1514/1875 train_loss:3.1907 train_time:243445ms step_avg:161.86ms step:1515/1875 train_loss:3.3325 train_time:243602ms step_avg:161.86ms step:1516/1875 train_loss:3.3471 train_time:243764ms step_avg:161.86ms step:1517/1875 train_loss:3.4008 train_time:243924ms step_avg:161.86ms step:1518/1875 train_loss:3.3085 train_time:244088ms step_avg:161.86ms step:1519/1875 train_loss:3.6026 train_time:244431ms step_avg:161.98ms step:1520/1875 train_loss:3.2341 train_time:244591ms step_avg:161.98ms step:1521/1875 train_loss:3.3060 train_time:244749ms step_avg:161.98ms step:1522/1875 train_loss:3.4488 train_time:244911ms step_avg:161.98ms step:1523/1875 train_loss:3.3217 train_time:245069ms step_avg:161.98ms step:1524/1875 train_loss:3.4373 train_time:245229ms step_avg:161.97ms step:1525/1875 train_loss:3.4229 train_time:245391ms step_avg:161.97ms step:1526/1875 train_loss:3.3719 train_time:245556ms step_avg:161.98ms step:1527/1875 train_loss:3.3765 train_time:245714ms step_avg:161.97ms step:1528/1875 train_loss:3.5082 train_time:245873ms step_avg:161.97ms step:1529/1875 train_loss:3.4995 train_time:246032ms step_avg:161.97ms step:1530/1875 train_loss:3.3269 train_time:246190ms step_avg:161.97ms step:1531/1875 train_loss:3.2848 train_time:246351ms step_avg:161.97ms step:1532/1875 train_loss:3.4586 train_time:246510ms step_avg:161.96ms step:1533/1875 train_loss:3.3733 train_time:246672ms step_avg:161.96ms step:1534/1875 train_loss:3.3723 train_time:246833ms step_avg:161.96ms step:1535/1875 train_loss:3.3769 train_time:246992ms step_avg:161.96ms step:1536/1875 train_loss:3.3162 train_time:247153ms step_avg:161.96ms step:1537/1875 train_loss:3.3663 train_time:247311ms step_avg:161.96ms step:1538/1875 train_loss:3.5213 train_time:247473ms step_avg:161.96ms step:1539/1875 train_loss:3.4935 train_time:247634ms step_avg:161.96ms step:1540/1875 train_loss:3.3742 train_time:247794ms step_avg:161.96ms step:1541/1875 train_loss:3.3292 train_time:247953ms step_avg:161.96ms step:1542/1875 train_loss:3.3425 train_time:248111ms step_avg:161.95ms step:1543/1875 train_loss:3.2499 train_time:248274ms step_avg:161.95ms step:1544/1875 train_loss:3.3870 train_time:248433ms step_avg:161.95ms step:1545/1875 train_loss:3.3589 train_time:248592ms step_avg:161.95ms step:1546/1875 train_loss:3.3471 train_time:248754ms step_avg:161.95ms step:1547/1875 train_loss:3.3017 train_time:248914ms step_avg:161.95ms step:1548/1875 train_loss:3.3515 train_time:249074ms step_avg:161.95ms step:1549/1875 train_loss:3.4313 train_time:249233ms step_avg:161.94ms step:1550/1875 train_loss:3.3818 train_time:249391ms step_avg:161.94ms step:1551/1875 train_loss:3.2941 train_time:249552ms step_avg:161.94ms step:1552/1875 train_loss:3.3092 train_time:249712ms step_avg:161.94ms step:1553/1875 train_loss:3.3075 train_time:249871ms step_avg:161.94ms step:1554/1875 train_loss:3.4420 train_time:250031ms step_avg:161.94ms step:1555/1875 train_loss:3.4292 train_time:250192ms step_avg:161.94ms step:1556/1875 train_loss:3.3692 train_time:250349ms step_avg:161.93ms step:1557/1875 train_loss:3.4089 train_time:250507ms step_avg:161.93ms step:1558/1875 train_loss:3.3471 train_time:250667ms step_avg:161.93ms step:1559/1875 train_loss:3.2298 train_time:250830ms step_avg:161.93ms step:1560/1875 train_loss:3.5176 train_time:250988ms step_avg:161.93ms step:1561/1875 train_loss:3.3139 train_time:251148ms step_avg:161.93ms step:1562/1875 train_loss:3.3010 train_time:251306ms step_avg:161.92ms step:1563/1875 train_loss:3.4157 train_time:251467ms step_avg:161.92ms step:1564/1875 train_loss:3.2438 train_time:251630ms step_avg:161.92ms step:1565/1875 train_loss:3.2658 train_time:251790ms step_avg:161.92ms step:1566/1875 train_loss:3.4592 train_time:251950ms step_avg:161.92ms step:1567/1875 train_loss:3.3219 train_time:252110ms step_avg:161.92ms step:1568/1875 train_loss:3.3271 train_time:252273ms step_avg:161.92ms step:1569/1875 train_loss:3.4176 train_time:252438ms step_avg:161.92ms step:1570/1875 train_loss:3.3836 train_time:252597ms step_avg:161.92ms step:1571/1875 train_loss:3.2432 train_time:252757ms step_avg:161.92ms step:1572/1875 train_loss:3.2836 train_time:252916ms step_avg:161.92ms step:1573/1875 train_loss:3.4026 train_time:253075ms step_avg:161.92ms step:1574/1875 train_loss:3.2582 train_time:253232ms step_avg:161.91ms step:1575/1875 train_loss:3.4163 train_time:253391ms step_avg:161.91ms step:1576/1875 train_loss:3.3247 train_time:253550ms step_avg:161.91ms step:1577/1875 train_loss:3.3740 train_time:253710ms step_avg:161.91ms step:1578/1875 train_loss:3.3556 train_time:253870ms step_avg:161.91ms step:1579/1875 train_loss:3.3270 train_time:254033ms step_avg:161.91ms step:1580/1875 train_loss:3.2925 train_time:254193ms step_avg:161.91ms step:1581/1875 train_loss:3.4964 train_time:254353ms step_avg:161.91ms step:1582/1875 train_loss:3.2994 train_time:254514ms step_avg:161.90ms step:1583/1875 train_loss:3.4680 train_time:254676ms step_avg:161.90ms step:1584/1875 train_loss:3.2859 train_time:254834ms step_avg:161.90ms step:1585/1875 train_loss:3.4540 train_time:254996ms step_avg:161.90ms step:1586/1875 train_loss:3.2358 train_time:255157ms step_avg:161.90ms step:1587/1875 train_loss:3.4318 train_time:255315ms step_avg:161.90ms step:1588/1875 train_loss:3.3211 train_time:255476ms step_avg:161.90ms step:1589/1875 train_loss:3.4770 train_time:255635ms step_avg:161.90ms step:1590/1875 train_loss:3.3187 train_time:255794ms step_avg:161.89ms step:1591/1875 train_loss:3.3375 train_time:255954ms step_avg:161.89ms step:1592/1875 train_loss:3.4026 train_time:256113ms step_avg:161.89ms step:1593/1875 train_loss:3.3780 train_time:256274ms step_avg:161.89ms step:1594/1875 train_loss:3.3517 train_time:256433ms step_avg:161.89ms step:1595/1875 train_loss:3.4908 train_time:256592ms step_avg:161.89ms step:1596/1875 train_loss:3.2022 train_time:256754ms step_avg:161.89ms step:1597/1875 train_loss:3.3713 train_time:256914ms step_avg:161.89ms step:1598/1875 train_loss:3.4217 train_time:257074ms step_avg:161.89ms step:1599/1875 train_loss:3.4844 train_time:257236ms step_avg:161.89ms step:1600/1875 train_loss:3.3099 train_time:257395ms step_avg:161.88ms step:1601/1875 train_loss:3.6160 train_time:257554ms step_avg:161.88ms step:1602/1875 train_loss:3.4952 train_time:257714ms step_avg:161.88ms step:1603/1875 train_loss:3.2872 train_time:257875ms step_avg:161.88ms step:1604/1875 train_loss:3.3119 train_time:258034ms step_avg:161.88ms step:1605/1875 train_loss:3.1973 train_time:258195ms step_avg:161.88ms step:1606/1875 train_loss:3.5153 train_time:258359ms step_avg:161.88ms step:1607/1875 train_loss:3.3374 train_time:258516ms step_avg:161.88ms step:1608/1875 train_loss:3.3499 train_time:258675ms step_avg:161.87ms step:1609/1875 train_loss:3.2868 train_time:258838ms step_avg:161.87ms step:1610/1875 train_loss:3.8320 train_time:259000ms step_avg:161.87ms step:1611/1875 train_loss:3.5404 train_time:259158ms step_avg:161.87ms step:1612/1875 train_loss:3.4322 train_time:259318ms step_avg:161.87ms step:1613/1875 train_loss:3.3068 train_time:259481ms step_avg:161.87ms step:1614/1875 train_loss:3.3402 train_time:259643ms step_avg:161.87ms step:1615/1875 train_loss:3.3509 train_time:259804ms step_avg:161.87ms step:1616/1875 train_loss:3.3149 train_time:259969ms step_avg:161.87ms step:1617/1875 train_loss:3.3911 train_time:260133ms step_avg:161.88ms step:1618/1875 train_loss:3.3164 train_time:260291ms step_avg:161.87ms step:1619/1875 train_loss:3.2264 train_time:260451ms step_avg:161.87ms step:1620/1875 train_loss:3.4981 train_time:260609ms step_avg:161.87ms step:1621/1875 train_loss:3.4226 train_time:260770ms step_avg:161.87ms step:1622/1875 train_loss:3.1975 train_time:260932ms step_avg:161.87ms step:1623/1875 train_loss:3.2964 train_time:261093ms step_avg:161.87ms step:1624/1875 train_loss:3.2501 train_time:261251ms step_avg:161.87ms step:1625/1875 train_loss:3.3616 train_time:261411ms step_avg:161.86ms step:1625/1875 val_loss:3.3383 train_time:261453ms step_avg:161.89ms step:1626/1875 train_loss:3.2832 train_time:261573ms step_avg:161.86ms step:1627/1875 train_loss:3.2747 train_time:261732ms step_avg:161.86ms step:1628/1875 train_loss:3.3954 train_time:261892ms step_avg:161.86ms step:1629/1875 train_loss:3.2831 train_time:262052ms step_avg:161.86ms step:1630/1875 train_loss:3.3578 train_time:262212ms step_avg:161.86ms step:1631/1875 train_loss:3.2143 train_time:262378ms step_avg:161.86ms step:1632/1875 train_loss:3.1890 train_time:262537ms step_avg:161.86ms step:1633/1875 train_loss:3.3360 train_time:262699ms step_avg:161.86ms step:1634/1875 train_loss:3.3426 train_time:262857ms step_avg:161.86ms step:1635/1875 train_loss:3.2853 train_time:263018ms step_avg:161.86ms step:1636/1875 train_loss:3.3676 train_time:263176ms step_avg:161.85ms step:1637/1875 train_loss:3.4170 train_time:263336ms step_avg:161.85ms step:1638/1875 train_loss:3.4422 train_time:263499ms step_avg:161.85ms step:1639/1875 train_loss:3.6079 train_time:263661ms step_avg:161.85ms step:1640/1875 train_loss:3.3983 train_time:263821ms step_avg:161.85ms step:1641/1875 train_loss:3.3393 train_time:263981ms step_avg:161.85ms step:1642/1875 train_loss:3.4429 train_time:264141ms step_avg:161.85ms step:1643/1875 train_loss:3.3168 train_time:264302ms step_avg:161.85ms step:1644/1875 train_loss:3.3503 train_time:264462ms step_avg:161.85ms step:1645/1875 train_loss:3.3504 train_time:264619ms step_avg:161.85ms step:1646/1875 train_loss:3.1066 train_time:264777ms step_avg:161.84ms step:1647/1875 train_loss:3.3618 train_time:264937ms step_avg:161.84ms step:1648/1875 train_loss:3.2507 train_time:265096ms step_avg:161.84ms step:1649/1875 train_loss:3.3193 train_time:265254ms step_avg:161.84ms step:1650/1875 train_loss:3.3085 train_time:265414ms step_avg:161.84ms step:1651/1875 train_loss:3.3817 train_time:265574ms step_avg:161.84ms step:1652/1875 train_loss:3.2946 train_time:265736ms step_avg:161.84ms step:1653/1875 train_loss:3.4223 train_time:265897ms step_avg:161.84ms step:1654/1875 train_loss:3.4224 train_time:266057ms step_avg:161.84ms step:1655/1875 train_loss:3.2187 train_time:266220ms step_avg:161.84ms step:1656/1875 train_loss:3.3747 train_time:266382ms step_avg:161.84ms step:1657/1875 train_loss:3.2866 train_time:266542ms step_avg:161.84ms step:1658/1875 train_loss:3.2523 train_time:266701ms step_avg:161.83ms step:1659/1875 train_loss:3.3481 train_time:266861ms step_avg:161.83ms step:1660/1875 train_loss:3.3785 train_time:267020ms step_avg:161.83ms step:1661/1875 train_loss:3.2877 train_time:267179ms step_avg:161.83ms step:1662/1875 train_loss:3.3914 train_time:267338ms step_avg:161.83ms step:1663/1875 train_loss:3.3806 train_time:267500ms step_avg:161.83ms step:1664/1875 train_loss:3.4414 train_time:267665ms step_avg:161.83ms step:1665/1875 train_loss:3.3695 train_time:267825ms step_avg:161.83ms step:1666/1875 train_loss:3.5411 train_time:267984ms step_avg:161.83ms step:1667/1875 train_loss:3.2363 train_time:268143ms step_avg:161.82ms step:1668/1875 train_loss:3.3294 train_time:268302ms step_avg:161.82ms step:1669/1875 train_loss:3.2418 train_time:268461ms step_avg:161.82ms step:1670/1875 train_loss:3.2568 train_time:268621ms step_avg:161.82ms step:1671/1875 train_loss:3.4069 train_time:268780ms step_avg:161.82ms step:1672/1875 train_loss:3.6089 train_time:268940ms step_avg:161.82ms step:1673/1875 train_loss:3.3084 train_time:269101ms step_avg:161.82ms step:1674/1875 train_loss:3.2936 train_time:269260ms step_avg:161.82ms step:1675/1875 train_loss:3.1598 train_time:269421ms step_avg:161.81ms step:1676/1875 train_loss:3.3762 train_time:269582ms step_avg:161.81ms step:1677/1875 train_loss:3.3121 train_time:269742ms step_avg:161.81ms step:1678/1875 train_loss:3.3274 train_time:269901ms step_avg:161.81ms step:1679/1875 train_loss:3.3306 train_time:270061ms step_avg:161.81ms step:1680/1875 train_loss:3.1179 train_time:270223ms step_avg:161.81ms step:1681/1875 train_loss:3.3296 train_time:270383ms step_avg:161.81ms step:1682/1875 train_loss:3.3220 train_time:270544ms step_avg:161.81ms step:1683/1875 train_loss:3.3427 train_time:270702ms step_avg:161.81ms step:1684/1875 train_loss:3.3725 train_time:270861ms step_avg:161.80ms step:1685/1875 train_loss:3.2758 train_time:271020ms step_avg:161.80ms step:1686/1875 train_loss:3.3992 train_time:271181ms step_avg:161.80ms step:1687/1875 train_loss:3.2770 train_time:271340ms step_avg:161.80ms step:1688/1875 train_loss:3.3548 train_time:271503ms step_avg:161.80ms step:1689/1875 train_loss:3.2636 train_time:271661ms step_avg:161.80ms step:1690/1875 train_loss:3.1199 train_time:271822ms step_avg:161.80ms step:1691/1875 train_loss:3.3372 train_time:271980ms step_avg:161.80ms step:1692/1875 train_loss:3.3263 train_time:272139ms step_avg:161.80ms step:1693/1875 train_loss:3.2447 train_time:272297ms step_avg:161.79ms step:1694/1875 train_loss:3.6487 train_time:272460ms step_avg:161.79ms step:1695/1875 train_loss:3.3658 train_time:272620ms step_avg:161.79ms step:1696/1875 train_loss:3.3668 train_time:272779ms step_avg:161.79ms step:1697/1875 train_loss:3.2818 train_time:272937ms step_avg:161.79ms step:1698/1875 train_loss:3.1561 train_time:273098ms step_avg:161.79ms step:1699/1875 train_loss:3.2626 train_time:273257ms step_avg:161.79ms step:1700/1875 train_loss:3.2779 train_time:273578ms step_avg:161.88ms step:1701/1875 train_loss:3.3515 train_time:273745ms step_avg:161.88ms step:1702/1875 train_loss:3.2732 train_time:273903ms step_avg:161.88ms step:1703/1875 train_loss:3.4509 train_time:274061ms step_avg:161.88ms step:1704/1875 train_loss:3.2371 train_time:274220ms step_avg:161.88ms step:1705/1875 train_loss:3.4640 train_time:274378ms step_avg:161.88ms step:1706/1875 train_loss:3.2906 train_time:274537ms step_avg:161.87ms step:1707/1875 train_loss:3.0840 train_time:274699ms step_avg:161.87ms step:1708/1875 train_loss:3.4130 train_time:274858ms step_avg:161.87ms step:1709/1875 train_loss:3.3233 train_time:275192ms step_avg:161.97ms step:1710/1875 train_loss:3.3094 train_time:275352ms step_avg:161.97ms step:1711/1875 train_loss:3.3133 train_time:275512ms step_avg:161.97ms step:1712/1875 train_loss:3.3532 train_time:275673ms step_avg:161.97ms step:1713/1875 train_loss:3.3688 train_time:275834ms step_avg:161.97ms step:1714/1875 train_loss:3.2675 train_time:275995ms step_avg:161.97ms step:1715/1875 train_loss:3.3085 train_time:276160ms step_avg:161.97ms step:1716/1875 train_loss:3.1214 train_time:276318ms step_avg:161.97ms step:1717/1875 train_loss:3.2739 train_time:276476ms step_avg:161.97ms step:1718/1875 train_loss:3.2933 train_time:276634ms step_avg:161.96ms step:1719/1875 train_loss:3.2443 train_time:276796ms step_avg:161.96ms step:1720/1875 train_loss:3.4066 train_time:276958ms step_avg:161.96ms step:1721/1875 train_loss:3.1914 train_time:277122ms step_avg:161.96ms step:1722/1875 train_loss:3.3415 train_time:277280ms step_avg:161.96ms step:1723/1875 train_loss:3.4333 train_time:277442ms step_avg:161.96ms step:1724/1875 train_loss:3.2854 train_time:277601ms step_avg:161.96ms step:1725/1875 train_loss:3.5162 train_time:277762ms step_avg:161.96ms step:1726/1875 train_loss:3.2847 train_time:277923ms step_avg:161.96ms step:1727/1875 train_loss:3.3593 train_time:278080ms step_avg:161.96ms step:1728/1875 train_loss:3.3238 train_time:278238ms step_avg:161.95ms step:1729/1875 train_loss:3.3068 train_time:278399ms step_avg:161.95ms step:1730/1875 train_loss:3.6882 train_time:278561ms step_avg:161.95ms step:1731/1875 train_loss:3.3154 train_time:278719ms step_avg:161.95ms step:1732/1875 train_loss:3.4588 train_time:278878ms step_avg:161.95ms step:1733/1875 train_loss:3.2290 train_time:279036ms step_avg:161.95ms step:1734/1875 train_loss:3.2672 train_time:279196ms step_avg:161.95ms step:1735/1875 train_loss:3.2983 train_time:279356ms step_avg:161.95ms step:1736/1875 train_loss:3.2804 train_time:279516ms step_avg:161.94ms step:1737/1875 train_loss:3.4044 train_time:279678ms step_avg:161.94ms step:1738/1875 train_loss:3.2569 train_time:279841ms step_avg:161.94ms step:1739/1875 train_loss:3.3160 train_time:280002ms step_avg:161.94ms step:1740/1875 train_loss:3.3933 train_time:280162ms step_avg:161.94ms step:1741/1875 train_loss:3.1959 train_time:280321ms step_avg:161.94ms step:1742/1875 train_loss:3.0901 train_time:280481ms step_avg:161.94ms step:1743/1875 train_loss:2.9819 train_time:280643ms step_avg:161.94ms step:1744/1875 train_loss:3.3168 train_time:280802ms step_avg:161.94ms step:1745/1875 train_loss:3.3349 train_time:280960ms step_avg:161.94ms step:1746/1875 train_loss:3.2923 train_time:281118ms step_avg:161.93ms step:1747/1875 train_loss:3.3170 train_time:281279ms step_avg:161.93ms step:1748/1875 train_loss:3.5268 train_time:281443ms step_avg:161.94ms step:1749/1875 train_loss:3.2540 train_time:281602ms step_avg:161.93ms step:1750/1875 train_loss:3.3085 train_time:281763ms step_avg:161.93ms step:1750/1875 val_loss:3.2997 train_time:281806ms step_avg:161.96ms step:1751/1875 train_loss:3.3217 train_time:281925ms step_avg:161.93ms step:1752/1875 train_loss:2.9271 train_time:282087ms step_avg:161.93ms step:1753/1875 train_loss:3.0457 train_time:282247ms step_avg:161.93ms step:1754/1875 train_loss:3.1091 train_time:282409ms step_avg:161.93ms step:1755/1875 train_loss:3.1051 train_time:282569ms step_avg:161.93ms step:1756/1875 train_loss:3.2891 train_time:282727ms step_avg:161.93ms step:1757/1875 train_loss:3.1699 train_time:282888ms step_avg:161.93ms step:1758/1875 train_loss:3.1472 train_time:283048ms step_avg:161.93ms step:1759/1875 train_loss:4.2259 train_time:283208ms step_avg:161.93ms step:1760/1875 train_loss:3.2853 train_time:283369ms step_avg:161.93ms step:1761/1875 train_loss:3.3305 train_time:283530ms step_avg:161.92ms step:1762/1875 train_loss:3.3317 train_time:283688ms step_avg:161.92ms step:1763/1875 train_loss:3.3391 train_time:283848ms step_avg:161.92ms step:1764/1875 train_loss:3.2568 train_time:284005ms step_avg:161.92ms step:1765/1875 train_loss:3.3171 train_time:284165ms step_avg:161.92ms step:1766/1875 train_loss:3.3102 train_time:284324ms step_avg:161.92ms step:1767/1875 train_loss:3.5363 train_time:284485ms step_avg:161.92ms step:1768/1875 train_loss:3.2965 train_time:284642ms step_avg:161.91ms step:1769/1875 train_loss:3.3615 train_time:284803ms step_avg:161.91ms step:1770/1875 train_loss:3.5711 train_time:284968ms step_avg:161.91ms step:1771/1875 train_loss:3.2680 train_time:285127ms step_avg:161.91ms step:1772/1875 train_loss:3.1823 train_time:285285ms step_avg:161.91ms step:1773/1875 train_loss:3.4293 train_time:285444ms step_avg:161.91ms step:1774/1875 train_loss:3.1868 train_time:285607ms step_avg:161.91ms step:1775/1875 train_loss:3.3558 train_time:285768ms step_avg:161.91ms step:1776/1875 train_loss:3.3736 train_time:285926ms step_avg:161.91ms step:1777/1875 train_loss:3.4942 train_time:286084ms step_avg:161.90ms step:1778/1875 train_loss:3.2956 train_time:286243ms step_avg:161.90ms step:1779/1875 train_loss:3.5843 train_time:286403ms step_avg:161.90ms step:1780/1875 train_loss:3.3516 train_time:286563ms step_avg:161.90ms step:1781/1875 train_loss:3.3608 train_time:286724ms step_avg:161.90ms step:1782/1875 train_loss:3.1423 train_time:286884ms step_avg:161.90ms step:1783/1875 train_loss:3.2519 train_time:287046ms step_avg:161.90ms step:1784/1875 train_loss:3.3896 train_time:287203ms step_avg:161.90ms step:1785/1875 train_loss:3.2930 train_time:287364ms step_avg:161.90ms step:1786/1875 train_loss:3.4578 train_time:287523ms step_avg:161.89ms step:1787/1875 train_loss:3.2587 train_time:287682ms step_avg:161.89ms step:1788/1875 train_loss:3.2352 train_time:287844ms step_avg:161.89ms step:1789/1875 train_loss:3.3777 train_time:288004ms step_avg:161.89ms step:1790/1875 train_loss:3.3002 train_time:288163ms step_avg:161.89ms step:1791/1875 train_loss:3.2378 train_time:288321ms step_avg:161.89ms step:1792/1875 train_loss:3.3606 train_time:288484ms step_avg:161.89ms step:1793/1875 train_loss:3.2463 train_time:288643ms step_avg:161.89ms step:1794/1875 train_loss:3.2382 train_time:288804ms step_avg:161.89ms step:1795/1875 train_loss:3.2927 train_time:288965ms step_avg:161.89ms step:1796/1875 train_loss:3.2190 train_time:289126ms step_avg:161.88ms step:1797/1875 train_loss:3.3966 train_time:289285ms step_avg:161.88ms step:1798/1875 train_loss:3.2845 train_time:289443ms step_avg:161.88ms step:1799/1875 train_loss:3.3602 train_time:289604ms step_avg:161.88ms step:1800/1875 train_loss:3.2714 train_time:289764ms step_avg:161.88ms step:1801/1875 train_loss:3.3314 train_time:289924ms step_avg:161.88ms step:1802/1875 train_loss:3.1972 train_time:290084ms step_avg:161.88ms step:1803/1875 train_loss:3.1396 train_time:290243ms step_avg:161.88ms step:1804/1875 train_loss:3.4106 train_time:290404ms step_avg:161.87ms step:1805/1875 train_loss:3.3282 train_time:290565ms step_avg:161.87ms step:1806/1875 train_loss:3.3303 train_time:290725ms step_avg:161.87ms step:1807/1875 train_loss:3.4496 train_time:290885ms step_avg:161.87ms step:1808/1875 train_loss:3.2443 train_time:291044ms step_avg:161.87ms step:1809/1875 train_loss:3.3443 train_time:291204ms step_avg:161.87ms step:1810/1875 train_loss:3.4881 train_time:291366ms step_avg:161.87ms step:1811/1875 train_loss:3.3415 train_time:291525ms step_avg:161.87ms step:1812/1875 train_loss:3.3764 train_time:291685ms step_avg:161.87ms step:1813/1875 train_loss:3.3963 train_time:291845ms step_avg:161.87ms step:1814/1875 train_loss:3.3448 train_time:292004ms step_avg:161.86ms step:1815/1875 train_loss:3.3597 train_time:292167ms step_avg:161.87ms step:1816/1875 train_loss:3.3329 train_time:292329ms step_avg:161.87ms step:1817/1875 train_loss:3.3884 train_time:292490ms step_avg:161.86ms step:1818/1875 train_loss:3.3149 train_time:292649ms step_avg:161.86ms step:1819/1875 train_loss:3.3081 train_time:292808ms step_avg:161.86ms step:1820/1875 train_loss:3.2737 train_time:292968ms step_avg:161.86ms step:1821/1875 train_loss:3.2164 train_time:293129ms step_avg:161.86ms step:1822/1875 train_loss:3.1680 train_time:293288ms step_avg:161.86ms step:1823/1875 train_loss:3.3291 train_time:293447ms step_avg:161.86ms step:1824/1875 train_loss:3.4129 train_time:293608ms step_avg:161.86ms step:1825/1875 train_loss:3.3868 train_time:293768ms step_avg:161.86ms step:1826/1875 train_loss:3.3747 train_time:293932ms step_avg:161.86ms step:1827/1875 train_loss:3.2521 train_time:294092ms step_avg:161.86ms step:1828/1875 train_loss:3.2124 train_time:294255ms step_avg:161.86ms step:1829/1875 train_loss:3.4123 train_time:294417ms step_avg:161.86ms step:1830/1875 train_loss:3.1640 train_time:294577ms step_avg:161.86ms step:1831/1875 train_loss:3.3190 train_time:294739ms step_avg:161.86ms step:1832/1875 train_loss:3.1955 train_time:294897ms step_avg:161.85ms step:1833/1875 train_loss:3.5286 train_time:295062ms step_avg:161.86ms step:1834/1875 train_loss:3.3573 train_time:295226ms step_avg:161.86ms step:1835/1875 train_loss:3.3355 train_time:295386ms step_avg:161.86ms step:1836/1875 train_loss:3.4605 train_time:295547ms step_avg:161.85ms step:1837/1875 train_loss:3.3326 train_time:295706ms step_avg:161.85ms step:1838/1875 train_loss:3.2240 train_time:295866ms step_avg:161.85ms step:1839/1875 train_loss:3.3186 train_time:296025ms step_avg:161.85ms step:1840/1875 train_loss:3.2007 train_time:296186ms step_avg:161.85ms step:1841/1875 train_loss:3.3259 train_time:296345ms step_avg:161.85ms step:1842/1875 train_loss:3.3699 train_time:296504ms step_avg:161.85ms step:1843/1875 train_loss:3.1154 train_time:296665ms step_avg:161.85ms step:1844/1875 train_loss:3.2506 train_time:296823ms step_avg:161.84ms step:1845/1875 train_loss:3.3292 train_time:296984ms step_avg:161.84ms step:1846/1875 train_loss:3.2555 train_time:297143ms step_avg:161.84ms step:1847/1875 train_loss:3.1557 train_time:297301ms step_avg:161.84ms step:1848/1875 train_loss:3.3969 train_time:297466ms step_avg:161.84ms step:1849/1875 train_loss:3.1870 train_time:297627ms step_avg:161.84ms step:1850/1875 train_loss:3.2751 train_time:297785ms step_avg:161.84ms step:1851/1875 train_loss:3.2255 train_time:297944ms step_avg:161.84ms step:1852/1875 train_loss:3.4223 train_time:298106ms step_avg:161.84ms step:1853/1875 train_loss:3.4038 train_time:298268ms step_avg:161.84ms step:1854/1875 train_loss:3.2719 train_time:298426ms step_avg:161.84ms step:1855/1875 train_loss:3.2344 train_time:298586ms step_avg:161.84ms step:1856/1875 train_loss:3.2586 train_time:298746ms step_avg:161.83ms step:1857/1875 train_loss:3.4992 train_time:298905ms step_avg:161.83ms step:1858/1875 train_loss:3.3030 train_time:299066ms step_avg:161.83ms step:1859/1875 train_loss:3.2713 train_time:299224ms step_avg:161.83ms step:1860/1875 train_loss:3.3360 train_time:299382ms step_avg:161.83ms step:1861/1875 train_loss:3.1860 train_time:299541ms step_avg:161.83ms step:1862/1875 train_loss:3.1924 train_time:299704ms step_avg:161.83ms step:1863/1875 train_loss:3.2814 train_time:299866ms step_avg:161.83ms step:1864/1875 train_loss:3.3306 train_time:300027ms step_avg:161.83ms step:1865/1875 train_loss:3.0756 train_time:300187ms step_avg:161.83ms step:1866/1875 train_loss:3.2275 train_time:300346ms step_avg:161.82ms step:1867/1875 train_loss:3.1810 train_time:300504ms step_avg:161.82ms step:1868/1875 train_loss:3.1651 train_time:300665ms step_avg:161.82ms step:1869/1875 train_loss:3.3388 train_time:300824ms step_avg:161.82ms step:1870/1875 train_loss:3.3265 train_time:300985ms step_avg:161.82ms step:1871/1875 train_loss:3.2627 train_time:301143ms step_avg:161.82ms step:1872/1875 train_loss:3.2911 train_time:301303ms step_avg:161.82ms step:1873/1875 train_loss:3.2135 train_time:301463ms step_avg:161.82ms step:1874/1875 train_loss:3.3112 train_time:301622ms step_avg:161.81ms step:1875/1875 train_loss:3.3139 train_time:301784ms step_avg:161.81ms step:1875/1875 val_loss:3.2783 train_time:301825ms step_avg:161.84ms