==================================================================================================== import os import sys with open(sys.argv[0]) as f: code = f.read() # read the code of this file ASAP, for logging import uuid import glob import time from dataclasses import dataclass import numpy as np import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist import torch._inductor.config as config from torch.nn.parallel import DistributedDataParallel as DDP # Use of FlexAttention contributed by @KoszarskyB from torch.nn.attention.flex_attention import flex_attention, create_block_mask flex_attention = torch.compile(flex_attention, dynamic=False) create_block_mask = torch.compile(create_block_mask, dynamic=False) # ----------------------------------------------------------------------------- # Muon optimizer def zeropower_via_svd(G, steps=None): U, S, V = G.svd() return U @ V.T @torch.compile def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7): """ Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at zero even beyond the point where the iteration no longer converges all the way to one everywhere on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model performance at all relative to UV^T, where USV^T = G is the SVD. """ assert len(G.shape) == 2 a, b, c = (3.4445, -4.7750, 2.0315) X = G.bfloat16() X /= (X.norm() + eps) # ensure top singular value <= 1 if G.size(0) > G.size(1): X = X.T for _ in range(steps): A = X @ X.T B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng X = a * X + B @ X if G.size(0) > G.size(1): X = X.T return X zeropower_backends = dict(svd=zeropower_via_svd, newtonschulz5=zeropower_via_newtonschulz5) class Muon(torch.optim.Optimizer): """ Muon - MomentUm Orthogonalized by Newton-schulz Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- processing step, in which each 2D parameter's update is replaced with the nearest orthogonal matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has the advantage that it can be stably run in bfloat16 on the GPU. Some warnings: - This optimizer assumes that all parameters passed in are 2D. - It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). - To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions. - We believe it is unlikely to work well for training with small batch size. - We believe it may not work well for finetuning pretrained models, but we haven't tested this. - We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M). Arguments: lr: The learning rate used by the internal SGD. momentum: The momentum used by the internal SGD. nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended) backend: The chosen backend for the orthogonalization step. (recommended: 'newtonschulz5') backend_steps: The number of iteration steps to use in the backend, if it is iterative. """ def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, backend='newtonschulz5', backend_steps=5): defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, backend=backend, backend_steps=backend_steps) super().__init__(params, defaults) def step(self): for group in self.param_groups: lr = group['lr'] momentum = group['momentum'] zeropower_backend = zeropower_backends[group['backend']] # generate weight updates in distributed fashion total_params = sum(p.numel() for p in group['params']) updates_flat = torch.zeros(total_params, device='cuda', dtype=torch.bfloat16) curr_idx = 0 for i, p in enumerate(group['params']): # luckily this will perfectly distribute a transformer with multiple of 4 layers to 8 GPUs if i % int(os.environ['WORLD_SIZE']) == int(os.environ['RANK']): g = p.grad assert g is not None state = self.state[p] if 'momentum_buffer' not in state: state['momentum_buffer'] = torch.zeros_like(g) buf = state['momentum_buffer'] buf.mul_(momentum).add_(g) if group['nesterov']: g = g.add(buf, alpha=momentum) g = zeropower_backend(g, steps=group['backend_steps']) g *= max(1, g.size(0)/g.size(1))**0.5 updates_flat[curr_idx:curr_idx+p.numel()] = g.flatten() curr_idx += p.numel() # sync updates across devices. we are not memory-constrained so can do this simple deserialization dist.all_reduce(updates_flat, op=dist.ReduceOp.SUM) # deserialize and apply updates curr_idx = 0 for p in group['params']: g = updates_flat[curr_idx:curr_idx+p.numel()].view_as(p.data).type_as(p.data) p.data.add_(g, alpha=-lr) curr_idx += p.numel() # ----------------------------------------------------------------------------- # PyTorch nn.Module definitions for the GPT-2 model class Rotary(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() self.dim = dim self.base = base self.inv_freq = None self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x): seq_len = x.shape[1] if seq_len != self.seq_len_cached: self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=x.device).float() / self.dim)) self.seq_len_cached = seq_len t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) self.cos_cached = freqs.cos().bfloat16() self.sin_cached = freqs.sin().bfloat16() return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] def apply_rotary_emb(x, cos, sin): assert x.ndim == 4 # multihead attention d = x.shape[3]//2 x1 = x[..., :d] x2 = x[..., d:] y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat([y1, y2], 3).type_as(x) class CastedLinear(nn.Linear): def forward(self, x): return F.linear(x, self.weight.to(x.dtype)) class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.n_head = config.n_head self.n_embd = config.n_embd self.head_dim = self.n_embd // self.n_head assert self.n_embd % self.n_head == 0 self.c_q = CastedLinear(self.n_embd, self.n_embd, bias=False) self.c_k = CastedLinear(self.n_embd, self.n_embd, bias=False) self.c_v = CastedLinear(self.n_embd, self.n_embd, bias=False) # output projection self.c_proj = CastedLinear(self.n_embd, self.n_embd, bias=False) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 self.rotary = Rotary(self.head_dim) self.lamb = nn.Parameter(torch.tensor(0.5)) # @Grad62304977 def forward(self, x, v1, block_mask): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_head, self.head_dim) if v1 is None: v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977 cos, sin = self.rotary(q) q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977 q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask) y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side y = self.c_proj(y) return y, v1 class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = CastedLinear(config.n_embd, 4 * config.n_embd, bias=False) self.c_proj = CastedLinear(4 * config.n_embd, config.n_embd, bias=False) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.attn = CausalSelfAttention(config) self.mlp = MLP(config) self.lambdas = nn.Parameter(torch.tensor([1., 0.])) def forward(self, x, v1, x0, block_mask): x = self.lambdas[0] * x + self.lambdas[1] * x0 x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1, block_mask) x = x + x1 x = x + self.mlp(F.rms_norm(x, (x.size(-1),))) return x, v1 # ----------------------------------------------------------------------------- # The main GPT-2 model @dataclass class GPTConfig: vocab_size : int = 50304 n_layer : int = 12 n_head : int = 6 # head dim 128 suggested by @Grad62304977 n_embd : int = 768 class GPT(nn.Module): def __init__(self, config): super().__init__() # U-net design by @brendanh0gan self.num_encoder_layers = config.n_layer // 2 # Half of the layers for encoder self.num_decoder_layers = config.n_layer - self.num_encoder_layers # Remaining for decoder # Add learnable skip connection weights for decoder layers self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers)) self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), )) self.lm_head = CastedLinear(config.n_embd, config.vocab_size, bias=False) self.lm_head.weight.data.zero_() # @Grad62304977 def forward(self, idx, target, attn_blocksize): docs = (idx == 50256).cumsum(0) def document_causal_mask(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx document_mask = docs[q_idx] == docs[kv_idx] window_mask = q_idx - kv_idx < attn_blocksize return causal_mask & document_mask & window_mask S = len(idx) block_mask = create_block_mask(document_causal_mask, None, None, S, S, device="cuda", _compile=True) # forward the GPT model itself x = self.transformer.wte(idx[None]) # token embeddings of shape (b, t, n_embd) x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977 x0 = x v1 = None # Store outputs for U-Net skip connections skip_connections = [] # Encoder pass - process only the first half of the blocks for i in range(self.num_encoder_layers): x, v1 = self.transformer.h[i](x, v1, x0, block_mask) skip_connections.append(x) # Decoder pass - process the remaining blocks with weighted skip connections for i in range(self.num_decoder_layers): x = x + self.skip_weights[i] * skip_connections.pop() x, v1 = self.transformer.h[self.num_encoder_layers + i](x, v1, x0, block_mask) x = F.rms_norm(x, (x.size(-1),)) logits = self.lm_head(x) logits = 30 * torch.tanh(logits / 30) # @Grad62304977 logits = logits.float() loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1)) return loss # ----------------------------------------------------------------------------- # Our own simple Distributed Data Loader def _peek_data_shard(filename): # only reads the header, returns header data with open(filename, "rb") as f: # first read the header, which is 256 int32 integers (4 bytes each) header = np.frombuffer(f.read(256*4), dtype=np.int32) if header[0] != 20240520: print("ERROR: magic number mismatch in the data .bin file!") print("---> HINT: Are you passing in a correct file with --input_bin?") print("---> HINT: Dataset encoding changed recently, re-run data prepro or refer again to README") print("---> HINT: For example re-run: `python dev/data/tinyshakespeare.py`, then re-try") exit(1) assert header[1] == 1, "unsupported version" ntok = header[2] # number of tokens (claimed) return ntok # for now just return the number of tokens def _load_data_shard(filename): with open(filename, "rb") as f: # first read the header, which is 256 int32 integers (4 bytes each) header = np.frombuffer(f.read(256*4), dtype=np.int32) assert header[0] == 20240520, "magic number mismatch in the data .bin file" assert header[1] == 1, "unsupported version" ntok = header[2] # number of tokens (claimed) # the rest of it are tokens, stored as uint16 tokens = np.frombuffer(f.read(), dtype=np.uint16) assert len(tokens) == ntok, "number of tokens read does not match header?" return tokens class DistributedDataLoader: def __init__(self, filename_pattern, B, T, process_rank, num_processes): self.process_rank = process_rank self.num_processes = num_processes self.B = B self.T = T # glob files that match the pattern self.files = sorted(glob.glob(filename_pattern)) assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}" # load and validate all data shards, count number of tokens in total ntok_total = 0 for fname in self.files: shard_ntok = _peek_data_shard(fname) assert shard_ntok >= num_processes * B * T + 1 ntok_total += int(shard_ntok) self.ntok_total = ntok_total self.reset() def reset(self): self.current_shard = -1 self.advance() def advance(self): # advance to next data shard self.current_shard = (self.current_shard + 1) % len(self.files) self.current_position = self.process_rank * self.B * self.T self.tokens = _load_data_shard(self.files[self.current_shard]) def next_batch(self): batch_size = self.B * self.T * self.num_processes buf = self.tokens[self.current_position:self.current_position+self.B*self.T+1] buf = torch.tensor(buf.astype(np.int32), dtype=torch.long) x = buf[:-1] # inputs y = buf[1:] # targets # advance current position and load next shard if necessary self.current_position += batch_size if self.current_position + batch_size >= len(self.tokens): self.advance() return x.cuda(), y.cuda() # ----------------------------------------------------------------------------- # int main @dataclass class Hyperparameters: # data hyperparams input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on # optimization hyperparams batch_size : int = 8 # batch size, in sequences, across all devices device_batch_size : int = 1 # batch size, in sequences, per device sequence_length : int = 64*1024 # sequence length, in tokens num_iterations : int = 1750 # number of iterations to run warmup_iters : int = 0 cooldown_iters : int = 640 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule weight_decay : float = 0 # evaluation and logging hyperparams val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end args = Hyperparameters() # set up DDP (distributed data parallel). torchrun sets this env variable assert torch.cuda.is_available() dist.init_process_group(backend='nccl') ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) ddp_world_size = int(os.environ['WORLD_SIZE']) device = f'cuda:{ddp_local_rank}' torch.cuda.set_device(device) print(f"using device: {device}") master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc. # begin logging logfile = None if master_process: run_id = str(uuid.uuid4()) logdir = 'logs/%s/' % run_id os.makedirs(logdir, exist_ok=True) logfile = 'logs/%s.txt' % run_id # create the log file with open(logfile, "w") as f: # begin the log by printing this file (the Python code) f.write('='*100 + '\n') f.write(code) f.write('='*100 + '\n') def print0(s, logonly=False): if master_process: with open(logfile, "a") as f: if not logonly: print(s) f.write(s+'\n') # log information about the hardware/software environment this is running on # and print the full `nvidia-smi` to file print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:") import subprocess result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) print0(f'{result.stdout}', logonly=True) print0('='*100, logonly=True) # convenience variables B, T = args.device_batch_size, args.sequence_length # calculate the number of steps to take in the val loop. assert args.val_tokens % (B * T * ddp_world_size) == 0 val_steps = args.val_tokens // (B * T * ddp_world_size) # calculate the steps of gradient accumulation required to attain the desired global batch size. assert args.batch_size % (B * ddp_world_size) == 0 train_accumulation_steps = args.batch_size // (B * ddp_world_size) # load tokens train_loader = DistributedDataLoader(args.input_bin, B, T, ddp_rank, ddp_world_size) val_loader = DistributedDataLoader(args.input_val_bin, B, T, ddp_rank, ddp_world_size) print0(f"Training DataLoader: total number of tokens: {train_loader.ntok_total} across {len(train_loader.files)} files") print0(f"Validation DataLoader: total number of tokens: {val_loader.ntok_total} across {len(val_loader.files)} files") print0('='*100, logonly=True) x, y = train_loader.next_batch() # there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977. # this originates from Karpathy's experiments. num_vocab = 50304 model = GPT(GPTConfig(vocab_size=num_vocab, n_layer=12, n_head=6, n_embd=768)) model = model.cuda().bfloat16() for m in model.modules(): if isinstance(m, CastedLinear): m.float() if hasattr(config, "coordinate_descent_tuning"): config.coordinate_descent_tuning = True # suggested by @Chillee model = torch.compile(model) # here we wrap model into DDP container model = DDP(model, device_ids=[ddp_local_rank]) raw_model = model.module # always contains the "raw" unwrapped model # CUDNN attention is ~4ms faster than Flash, but doesn't get selected by default in PyTorch 2.5.1 from torch.backends.cuda import enable_cudnn_sdp, enable_flash_sdp, enable_math_sdp, enable_mem_efficient_sdp enable_cudnn_sdp(True) enable_flash_sdp(False) enable_mem_efficient_sdp(False) enable_math_sdp(False) # init the optimizer(s) optimizer1 = torch.optim.Adam([raw_model.transformer.wte.weight], lr=0.6, betas=(0.8, 0.95), fused=True) optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True) params = list(raw_model.transformer.h.parameters()) matrix_params = [p for p in params if p.ndim == 2] scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights] optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95) optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) # note that this learning rate is neither sensitive nor tuned optimizers = [optimizer1, optimizer2, optimizer3, optimizer4] # learning rate decay scheduler (linear warmup and cooldown) def get_lr(it): assert it <= args.num_iterations # 1) linear warmup for warmup_iters steps if it < args.warmup_iters: return (it+1) / args.warmup_iters # 2) constant lr for a while elif it < args.num_iterations - args.cooldown_iters: return 1.0 # 3) linear cooldown else: decay_ratio = (args.num_iterations - it) / args.cooldown_iters return decay_ratio schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers] # Start training loop training_time_ms = 0 # start the clock torch.cuda.synchronize() t0 = time.time() # begin training for step in range(args.num_iterations + 1): last_step = (step == args.num_iterations) # Set the attention blocksize for the current step, in chunks of 64 attn_blocksize = torch.tensor(64*((step/args.num_iterations * (1792 - 64) + 64)//64), dtype=torch.int, device='cuda') # This effectively ignores timing first 10 steps, which are slower for weird reasons. # Alternately, and slightly more correctly in terms of benchmarking, we could do 10 # steps with dummy data first, and then re-initialize the model and reset the loader. if step == 10: training_time_ms = 0 t0 = time.time() timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val # once in a while evaluate the validation dataset if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.time() - t0) # run validation batches model.eval() val_loader.reset() val_loss = 0.0 for _ in range(val_steps): with torch.no_grad(): x_val, y_val = val_loader.next_batch() val_loss += model(x_val, y_val, attn_blocksize=attn_blocksize) dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) val_loss /= val_steps # log val loss to console and to logfile print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms') # start the clock again torch.cuda.synchronize() t0 = time.time() if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.time() - t0) # save the state of the training process log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step)) # start the clock again torch.cuda.synchronize() t0 = time.time() # bit confusing: we want to make sure to eval on 0th iteration # but also after the very last iteration. so we loop for step <= num_iterations # instead of just < num_iterations (one extra due to <=), only to do # the validation/sampling one last time, and then we break right here as we're done. if last_step: break # --------------- TRAINING SECTION BEGIN ----------------- model.train() for i in range(1, train_accumulation_steps+1): # forward pass loss = model(x, y, attn_blocksize=attn_blocksize) train_loss = loss.detach() # advance the dataset for the next batch x, y = train_loader.next_batch() # backward pass if i < train_accumulation_steps: with model.no_sync(): # there's no need to sync gradients every accumulation step loss.backward() else: loss.backward() # just sync on the last step for p in model.parameters(): p.grad /= train_accumulation_steps # momentum warmup for Muon frac = min(step/300, 1) optimizer3.param_groups[0]['momentum'] = (1 - frac) * 0.85 + frac * 0.95 # step the optimizers and schedulers for opt, sched in zip(optimizers, schedulers): opt.step() sched.step() # null the gradients model.zero_grad(set_to_none=True) # --------------- TRAINING SECTION END ------------------- # everything that follows now is just diagnostics, prints, logging, etc. #dist.all_reduce(train_loss, op=dist.ReduceOp.AVG) # all-reducing the training loss would be more correct in terms of logging, but slower approx_time = training_time_ms + 1000 * (time.time() - t0) print0(f"step:{step+1}/{args.num_iterations} train_loss:{train_loss.item():.4f} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms") if master_process: print(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB") # ------------------------------------------------------------------------- # clean up nice dist.destroy_process_group() ==================================================================================================== Running pytorch 2.6.0.dev20241124+cu124 compiled for CUDA 12.4 nvidia-smi: Sun Nov 24 23:36:17 2024 +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 555.42.06 Driver Version: 555.42.06 CUDA Version: 12.5 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA H100 80GB HBM3 Off | 00000000:18:00.0 Off | 0 | | N/A 28C P0 68W / 700W | 4MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 1 NVIDIA H100 80GB HBM3 Off | 00000000:2A:00.0 Off | 0 | | N/A 31C P0 114W / 700W | 34MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 2 NVIDIA H100 80GB HBM3 Off | 00000000:3A:00.0 Off | 0 | | N/A 32C P0 111W / 700W | 530MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 3 NVIDIA H100 80GB HBM3 Off | 00000000:5D:00.0 Off | 0 | | N/A 29C P0 112W / 700W | 530MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 4 NVIDIA H100 80GB HBM3 Off | 00000000:84:00.0 Off | 0 | | N/A 29C P0 111W / 700W | 530MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 5 NVIDIA H100 80GB HBM3 Off | 00000000:8B:00.0 Off | 0 | | N/A 32C P0 113W / 700W | 530MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 6 NVIDIA H100 80GB HBM3 Off | 00000000:91:00.0 Off | 0 | | N/A 30C P0 110W / 700W | 530MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ | 7 NVIDIA H100 80GB HBM3 Off | 00000000:E4:00.0 Off | 0 | | N/A 29C P0 114W / 700W | 530MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+------------------------+----------------------+ +-----------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=========================================================================================| | 1 N/A N/A 1796 C /usr/bin/python3 0MiB | | 2 N/A N/A 1797 C /usr/bin/python3 0MiB | | 3 N/A N/A 1798 C /usr/bin/python3 0MiB | | 4 N/A N/A 1799 C /usr/bin/python3 0MiB | | 5 N/A N/A 1800 C /usr/bin/python3 0MiB | | 6 N/A N/A 1801 C /usr/bin/python3 0MiB | | 7 N/A N/A 1802 C /usr/bin/python3 0MiB | +-----------------------------------------------------------------------------------------+ ==================================================================================================== Training DataLoader: total number of tokens: 1800000000 across 18 files Validation DataLoader: total number of tokens: 100000000 across 1 files ==================================================================================================== step:0/1750 val_loss:10.8258 train_time:0ms step_avg:nanms step:1/1750 train_loss:10.8258 train_time:163438ms step_avg:nanms step:2/1750 train_loss:10.0893 train_time:163548ms step_avg:nanms step:3/1750 train_loss:8.3951 train_time:163693ms step_avg:nanms step:4/1750 train_loss:7.5780 train_time:163842ms step_avg:nanms step:5/1750 train_loss:7.4681 train_time:163991ms step_avg:nanms step:6/1750 train_loss:6.9705 train_time:164138ms step_avg:nanms step:7/1750 train_loss:7.2105 train_time:164285ms step_avg:nanms step:8/1750 train_loss:6.7367 train_time:164434ms step_avg:nanms step:9/1750 train_loss:6.6213 train_time:164581ms step_avg:nanms step:10/1750 train_loss:6.5087 train_time:164728ms step_avg:nanms step:11/1750 train_loss:6.4831 train_time:110ms step_avg:nanms step:12/1750 train_loss:6.3491 train_time:257ms step_avg:nanms step:13/1750 train_loss:6.2939 train_time:407ms step_avg:135.58ms step:14/1750 train_loss:6.2331 train_time:553ms step_avg:138.33ms step:15/1750 train_loss:6.2026 train_time:701ms step_avg:140.24ms step:16/1750 train_loss:6.1480 train_time:849ms step_avg:141.52ms step:17/1750 train_loss:6.2293 train_time:996ms step_avg:142.24ms step:18/1750 train_loss:6.0134 train_time:1145ms step_avg:143.09ms step:19/1750 train_loss:6.0690 train_time:1292ms step_avg:143.54ms step:20/1750 train_loss:5.7139 train_time:1440ms step_avg:143.97ms step:21/1750 train_loss:6.0282 train_time:1588ms step_avg:144.36ms step:22/1750 train_loss:6.2938 train_time:1736ms step_avg:144.65ms step:23/1750 train_loss:5.9283 train_time:1884ms step_avg:144.90ms step:24/1750 train_loss:6.0908 train_time:2032ms step_avg:145.13ms step:25/1750 train_loss:5.7889 train_time:2180ms step_avg:145.32ms step:26/1750 train_loss:5.7179 train_time:2330ms step_avg:145.60ms step:27/1750 train_loss:5.9059 train_time:2476ms step_avg:145.67ms step:28/1750 train_loss:5.5065 train_time:2626ms step_avg:145.89ms step:29/1750 train_loss:5.7777 train_time:2774ms step_avg:145.98ms step:30/1750 train_loss:5.5997 train_time:2922ms step_avg:146.11ms step:31/1750 train_loss:5.5644 train_time:3070ms step_avg:146.17ms step:32/1750 train_loss:5.4084 train_time:3216ms step_avg:146.18ms step:33/1750 train_loss:5.6910 train_time:3365ms step_avg:146.30ms step:34/1750 train_loss:5.5944 train_time:3513ms step_avg:146.36ms step:35/1750 train_loss:5.7210 train_time:3660ms step_avg:146.39ms step:36/1750 train_loss:5.6432 train_time:3809ms step_avg:146.49ms step:37/1750 train_loss:5.5441 train_time:3956ms step_avg:146.51ms step:38/1750 train_loss:5.4215 train_time:4105ms step_avg:146.59ms step:39/1750 train_loss:5.4423 train_time:4252ms step_avg:146.62ms step:40/1750 train_loss:5.3416 train_time:4399ms step_avg:146.62ms step:41/1750 train_loss:5.3366 train_time:4547ms step_avg:146.68ms step:42/1750 train_loss:5.2762 train_time:4693ms step_avg:146.67ms step:43/1750 train_loss:5.3978 train_time:4841ms step_avg:146.71ms step:44/1750 train_loss:5.3553 train_time:4989ms step_avg:146.74ms step:45/1750 train_loss:5.4858 train_time:5137ms step_avg:146.77ms step:46/1750 train_loss:5.2656 train_time:5284ms step_avg:146.79ms step:47/1750 train_loss:5.1761 train_time:5432ms step_avg:146.82ms step:48/1750 train_loss:5.3076 train_time:5580ms step_avg:146.83ms step:49/1750 train_loss:5.2348 train_time:5729ms step_avg:146.88ms step:50/1750 train_loss:5.3447 train_time:5876ms step_avg:146.90ms step:51/1750 train_loss:5.2615 train_time:6025ms step_avg:146.94ms step:52/1750 train_loss:5.1171 train_time:6172ms step_avg:146.95ms step:53/1750 train_loss:5.2673 train_time:6319ms step_avg:146.95ms step:54/1750 train_loss:5.1178 train_time:6468ms step_avg:146.99ms step:55/1750 train_loss:5.4847 train_time:6616ms step_avg:147.02ms step:56/1750 train_loss:5.1145 train_time:6764ms step_avg:147.04ms step:57/1750 train_loss:4.9826 train_time:6911ms step_avg:147.05ms step:58/1750 train_loss:5.1019 train_time:7057ms step_avg:147.03ms step:59/1750 train_loss:5.1164 train_time:7207ms step_avg:147.08ms step:60/1750 train_loss:5.2303 train_time:7354ms step_avg:147.08ms step:61/1750 train_loss:4.9726 train_time:7501ms step_avg:147.08ms step:62/1750 train_loss:5.0816 train_time:7649ms step_avg:147.10ms step:63/1750 train_loss:5.0547 train_time:7795ms step_avg:147.08ms step:64/1750 train_loss:4.9510 train_time:7944ms step_avg:147.11ms step:65/1750 train_loss:4.9034 train_time:8091ms step_avg:147.11ms step:66/1750 train_loss:5.0774 train_time:8239ms step_avg:147.13ms step:67/1750 train_loss:4.9320 train_time:8387ms step_avg:147.14ms step:68/1750 train_loss:5.1849 train_time:8534ms step_avg:147.14ms step:69/1750 train_loss:4.8183 train_time:8681ms step_avg:147.13ms step:70/1750 train_loss:4.9104 train_time:8829ms step_avg:147.16ms step:71/1750 train_loss:5.0624 train_time:8976ms step_avg:147.15ms step:72/1750 train_loss:4.9887 train_time:9124ms step_avg:147.17ms step:73/1750 train_loss:4.8633 train_time:9271ms step_avg:147.16ms step:74/1750 train_loss:4.9941 train_time:9418ms step_avg:147.16ms step:75/1750 train_loss:4.9696 train_time:9566ms step_avg:147.17ms step:76/1750 train_loss:4.9045 train_time:9714ms step_avg:147.17ms step:77/1750 train_loss:5.0199 train_time:9860ms step_avg:147.17ms step:78/1750 train_loss:5.2016 train_time:10009ms step_avg:147.19ms step:79/1750 train_loss:4.9216 train_time:10156ms step_avg:147.19ms step:80/1750 train_loss:4.9497 train_time:10304ms step_avg:147.20ms step:81/1750 train_loss:4.7405 train_time:10452ms step_avg:147.22ms step:82/1750 train_loss:4.8915 train_time:10599ms step_avg:147.22ms step:83/1750 train_loss:4.8516 train_time:10748ms step_avg:147.23ms step:84/1750 train_loss:4.8451 train_time:10895ms step_avg:147.23ms step:85/1750 train_loss:4.6940 train_time:11044ms step_avg:147.25ms step:86/1750 train_loss:4.9021 train_time:11191ms step_avg:147.25ms step:87/1750 train_loss:4.8275 train_time:11338ms step_avg:147.25ms step:88/1750 train_loss:4.8348 train_time:11486ms step_avg:147.25ms step:89/1750 train_loss:4.7845 train_time:11633ms step_avg:147.26ms step:90/1750 train_loss:4.7102 train_time:11781ms step_avg:147.26ms step:91/1750 train_loss:4.7036 train_time:11928ms step_avg:147.27ms step:92/1750 train_loss:4.8486 train_time:12076ms step_avg:147.27ms step:93/1750 train_loss:4.6607 train_time:12224ms step_avg:147.28ms step:94/1750 train_loss:4.7021 train_time:12371ms step_avg:147.27ms step:95/1750 train_loss:4.7476 train_time:12517ms step_avg:147.26ms step:96/1750 train_loss:4.6388 train_time:12666ms step_avg:147.28ms step:97/1750 train_loss:4.6843 train_time:12813ms step_avg:147.28ms step:98/1750 train_loss:4.6344 train_time:12960ms step_avg:147.27ms step:99/1750 train_loss:4.7371 train_time:13109ms step_avg:147.29ms step:100/1750 train_loss:4.7256 train_time:13256ms step_avg:147.29ms step:101/1750 train_loss:4.5779 train_time:13404ms step_avg:147.30ms step:102/1750 train_loss:4.7521 train_time:13551ms step_avg:147.30ms step:103/1750 train_loss:4.6428 train_time:13698ms step_avg:147.29ms step:104/1750 train_loss:4.5703 train_time:13847ms step_avg:147.31ms step:105/1750 train_loss:4.6017 train_time:13993ms step_avg:147.30ms step:106/1750 train_loss:4.6746 train_time:14142ms step_avg:147.31ms step:107/1750 train_loss:4.5616 train_time:14289ms step_avg:147.31ms step:108/1750 train_loss:4.3978 train_time:14437ms step_avg:147.32ms step:109/1750 train_loss:4.5401 train_time:14585ms step_avg:147.32ms step:110/1750 train_loss:4.5238 train_time:14732ms step_avg:147.32ms step:111/1750 train_loss:4.4611 train_time:14879ms step_avg:147.32ms step:112/1750 train_loss:4.6176 train_time:15027ms step_avg:147.32ms step:113/1750 train_loss:4.5175 train_time:15175ms step_avg:147.33ms step:114/1750 train_loss:4.3843 train_time:15323ms step_avg:147.34ms step:115/1750 train_loss:4.5378 train_time:15470ms step_avg:147.34ms step:116/1750 train_loss:4.5121 train_time:15617ms step_avg:147.33ms step:117/1750 train_loss:4.4269 train_time:15765ms step_avg:147.34ms step:118/1750 train_loss:4.6516 train_time:15915ms step_avg:147.36ms step:119/1750 train_loss:4.5109 train_time:16061ms step_avg:147.35ms step:120/1750 train_loss:4.4046 train_time:16210ms step_avg:147.37ms step:121/1750 train_loss:4.3465 train_time:16357ms step_avg:147.36ms step:122/1750 train_loss:4.4887 train_time:16505ms step_avg:147.37ms step:123/1750 train_loss:4.3337 train_time:16652ms step_avg:147.37ms step:124/1750 train_loss:4.6312 train_time:16800ms step_avg:147.36ms step:125/1750 train_loss:4.5231 train_time:16948ms step_avg:147.37ms step:125/1750 val_loss:4.4538 train_time:16985ms step_avg:147.70ms step:126/1750 train_loss:4.4651 train_time:17096ms step_avg:147.38ms step:127/1750 train_loss:4.4789 train_time:17246ms step_avg:147.41ms step:128/1750 train_loss:4.4198 train_time:17393ms step_avg:147.40ms step:129/1750 train_loss:4.7347 train_time:17541ms step_avg:147.40ms step:130/1750 train_loss:4.4163 train_time:17689ms step_avg:147.41ms step:131/1750 train_loss:4.4430 train_time:17838ms step_avg:147.42ms step:132/1750 train_loss:4.3889 train_time:17990ms step_avg:147.46ms step:133/1750 train_loss:4.4932 train_time:18139ms step_avg:147.47ms step:134/1750 train_loss:4.2932 train_time:18290ms step_avg:147.50ms step:135/1750 train_loss:4.4814 train_time:18441ms step_avg:147.53ms step:136/1750 train_loss:4.2469 train_time:18591ms step_avg:147.55ms step:137/1750 train_loss:4.4101 train_time:18741ms step_avg:147.57ms step:138/1750 train_loss:4.3273 train_time:18892ms step_avg:147.59ms step:139/1750 train_loss:4.4063 train_time:19043ms step_avg:147.62ms step:140/1750 train_loss:4.5022 train_time:19194ms step_avg:147.64ms step:141/1750 train_loss:4.3406 train_time:19344ms step_avg:147.67ms step:142/1750 train_loss:4.3411 train_time:19494ms step_avg:147.69ms step:143/1750 train_loss:4.2793 train_time:19646ms step_avg:147.71ms step:144/1750 train_loss:4.3757 train_time:19795ms step_avg:147.72ms step:145/1750 train_loss:4.3371 train_time:19946ms step_avg:147.75ms step:146/1750 train_loss:4.2026 train_time:20097ms step_avg:147.77ms step:147/1750 train_loss:4.3480 train_time:20250ms step_avg:147.81ms step:148/1750 train_loss:4.3887 train_time:20400ms step_avg:147.83ms step:149/1750 train_loss:4.3296 train_time:20552ms step_avg:147.86ms step:150/1750 train_loss:4.4696 train_time:20703ms step_avg:147.88ms step:151/1750 train_loss:4.2961 train_time:20854ms step_avg:147.90ms step:152/1750 train_loss:4.3049 train_time:21004ms step_avg:147.92ms step:153/1750 train_loss:4.3990 train_time:21154ms step_avg:147.93ms step:154/1750 train_loss:4.3798 train_time:21305ms step_avg:147.95ms step:155/1750 train_loss:4.3071 train_time:21455ms step_avg:147.97ms step:156/1750 train_loss:4.3730 train_time:21606ms step_avg:147.99ms step:157/1750 train_loss:4.4318 train_time:21757ms step_avg:148.00ms step:158/1750 train_loss:4.2650 train_time:21907ms step_avg:148.02ms step:159/1750 train_loss:4.3304 train_time:22058ms step_avg:148.04ms step:160/1750 train_loss:4.1536 train_time:22208ms step_avg:148.05ms step:161/1750 train_loss:4.3783 train_time:22358ms step_avg:148.07ms step:162/1750 train_loss:4.3926 train_time:22509ms step_avg:148.08ms step:163/1750 train_loss:4.3581 train_time:22660ms step_avg:148.10ms step:164/1750 train_loss:4.2046 train_time:22811ms step_avg:148.12ms step:165/1750 train_loss:4.3091 train_time:22961ms step_avg:148.13ms step:166/1750 train_loss:4.3748 train_time:23111ms step_avg:148.15ms step:167/1750 train_loss:4.2263 train_time:23260ms step_avg:148.16ms step:168/1750 train_loss:4.3050 train_time:23411ms step_avg:148.17ms step:169/1750 train_loss:4.1774 train_time:23561ms step_avg:148.18ms step:170/1750 train_loss:4.0538 train_time:23712ms step_avg:148.20ms step:171/1750 train_loss:4.2378 train_time:23862ms step_avg:148.21ms step:172/1750 train_loss:4.2340 train_time:24012ms step_avg:148.22ms step:173/1750 train_loss:4.2895 train_time:24164ms step_avg:148.24ms step:174/1750 train_loss:4.4565 train_time:24313ms step_avg:148.25ms step:175/1750 train_loss:4.2879 train_time:24464ms step_avg:148.27ms step:176/1750 train_loss:4.1282 train_time:24614ms step_avg:148.28ms step:177/1750 train_loss:4.0948 train_time:24765ms step_avg:148.29ms step:178/1750 train_loss:4.2127 train_time:24914ms step_avg:148.30ms step:179/1750 train_loss:4.1663 train_time:25066ms step_avg:148.32ms step:180/1750 train_loss:4.1423 train_time:25215ms step_avg:148.32ms step:181/1750 train_loss:4.3258 train_time:25367ms step_avg:148.34ms step:182/1750 train_loss:4.1825 train_time:25516ms step_avg:148.35ms step:183/1750 train_loss:4.1683 train_time:25667ms step_avg:148.37ms step:184/1750 train_loss:4.1513 train_time:25817ms step_avg:148.37ms step:185/1750 train_loss:4.2424 train_time:25968ms step_avg:148.39ms step:186/1750 train_loss:4.2009 train_time:26118ms step_avg:148.40ms step:187/1750 train_loss:4.2737 train_time:26269ms step_avg:148.41ms step:188/1750 train_loss:4.1966 train_time:26536ms step_avg:149.08ms step:189/1750 train_loss:4.1472 train_time:26837ms step_avg:149.93ms step:190/1750 train_loss:4.2418 train_time:26990ms step_avg:149.94ms step:191/1750 train_loss:4.1192 train_time:27141ms step_avg:149.95ms step:192/1750 train_loss:4.0633 train_time:27291ms step_avg:149.95ms step:193/1750 train_loss:4.2836 train_time:27442ms step_avg:149.96ms step:194/1750 train_loss:4.2035 train_time:27592ms step_avg:149.96ms step:195/1750 train_loss:4.3966 train_time:27743ms step_avg:149.96ms step:196/1750 train_loss:4.2172 train_time:27893ms step_avg:149.96ms step:197/1750 train_loss:4.0753 train_time:28044ms step_avg:149.97ms step:198/1750 train_loss:4.2062 train_time:28194ms step_avg:149.97ms step:199/1750 train_loss:4.0584 train_time:28344ms step_avg:149.97ms step:200/1750 train_loss:4.1504 train_time:28493ms step_avg:149.96ms step:201/1750 train_loss:4.0286 train_time:28642ms step_avg:149.96ms step:202/1750 train_loss:4.2739 train_time:28792ms step_avg:149.96ms step:203/1750 train_loss:4.0900 train_time:28941ms step_avg:149.95ms step:204/1750 train_loss:4.2088 train_time:29090ms step_avg:149.95ms step:205/1750 train_loss:4.2703 train_time:29240ms step_avg:149.95ms step:206/1750 train_loss:3.9673 train_time:29389ms step_avg:149.95ms step:207/1750 train_loss:4.1045 train_time:29538ms step_avg:149.94ms step:208/1750 train_loss:4.1207 train_time:29689ms step_avg:149.94ms step:209/1750 train_loss:4.2634 train_time:29838ms step_avg:149.94ms step:210/1750 train_loss:4.2119 train_time:29988ms step_avg:149.94ms step:211/1750 train_loss:4.0755 train_time:30164ms step_avg:150.07ms step:212/1750 train_loss:4.1534 train_time:30326ms step_avg:150.13ms step:213/1750 train_loss:4.0654 train_time:30474ms step_avg:150.12ms step:214/1750 train_loss:4.1369 train_time:30624ms step_avg:150.12ms step:215/1750 train_loss:3.9738 train_time:30773ms step_avg:150.11ms step:216/1750 train_loss:4.0305 train_time:30923ms step_avg:150.11ms step:217/1750 train_loss:4.0277 train_time:31072ms step_avg:150.11ms step:218/1750 train_loss:4.1009 train_time:31222ms step_avg:150.11ms step:219/1750 train_loss:4.0920 train_time:31371ms step_avg:150.10ms step:220/1750 train_loss:4.1055 train_time:31521ms step_avg:150.10ms step:221/1750 train_loss:4.1255 train_time:31671ms step_avg:150.10ms step:222/1750 train_loss:4.0226 train_time:31820ms step_avg:150.09ms step:223/1750 train_loss:4.0041 train_time:31970ms step_avg:150.09ms step:224/1750 train_loss:4.3246 train_time:32118ms step_avg:150.09ms step:225/1750 train_loss:3.9332 train_time:32268ms step_avg:150.09ms step:226/1750 train_loss:4.0081 train_time:32417ms step_avg:150.08ms step:227/1750 train_loss:4.0051 train_time:32567ms step_avg:150.08ms step:228/1750 train_loss:4.1663 train_time:32715ms step_avg:150.07ms step:229/1750 train_loss:3.9598 train_time:32865ms step_avg:150.07ms step:230/1750 train_loss:4.0801 train_time:33013ms step_avg:150.06ms step:231/1750 train_loss:3.9158 train_time:33163ms step_avg:150.06ms step:232/1750 train_loss:3.9955 train_time:33312ms step_avg:150.05ms step:233/1750 train_loss:4.1198 train_time:33461ms step_avg:150.05ms step:234/1750 train_loss:4.0620 train_time:33611ms step_avg:150.05ms step:235/1750 train_loss:3.9269 train_time:33761ms step_avg:150.05ms step:236/1750 train_loss:4.1247 train_time:33910ms step_avg:150.04ms step:237/1750 train_loss:4.1033 train_time:34059ms step_avg:150.04ms step:238/1750 train_loss:3.9671 train_time:34208ms step_avg:150.04ms step:239/1750 train_loss:4.1156 train_time:34358ms step_avg:150.03ms step:240/1750 train_loss:4.1388 train_time:34508ms step_avg:150.03ms step:241/1750 train_loss:3.9918 train_time:34658ms step_avg:150.03ms step:242/1750 train_loss:4.1711 train_time:34807ms step_avg:150.03ms step:243/1750 train_loss:4.0377 train_time:34956ms step_avg:150.03ms step:244/1750 train_loss:4.0966 train_time:35106ms step_avg:150.02ms step:245/1750 train_loss:4.1625 train_time:35255ms step_avg:150.02ms step:246/1750 train_loss:4.0826 train_time:35404ms step_avg:150.02ms step:247/1750 train_loss:4.0306 train_time:35553ms step_avg:150.01ms step:248/1750 train_loss:4.1463 train_time:35703ms step_avg:150.01ms step:249/1750 train_loss:3.9394 train_time:35853ms step_avg:150.01ms step:250/1750 train_loss:3.9975 train_time:36002ms step_avg:150.01ms step:250/1750 val_loss:4.0346 train_time:36040ms step_avg:150.17ms step:251/1750 train_loss:4.1051 train_time:36152ms step_avg:150.01ms step:252/1750 train_loss:4.1939 train_time:36303ms step_avg:150.01ms step:253/1750 train_loss:3.9638 train_time:36455ms step_avg:150.02ms step:254/1750 train_loss:3.9133 train_time:36603ms step_avg:150.01ms step:255/1750 train_loss:4.0981 train_time:36753ms step_avg:150.01ms step:256/1750 train_loss:4.0202 train_time:36901ms step_avg:150.01ms step:257/1750 train_loss:4.0193 train_time:37053ms step_avg:150.01ms step:258/1750 train_loss:4.0179 train_time:37202ms step_avg:150.01ms step:259/1750 train_loss:4.0585 train_time:37352ms step_avg:150.01ms step:260/1750 train_loss:4.0880 train_time:37502ms step_avg:150.01ms step:261/1750 train_loss:4.0460 train_time:37655ms step_avg:150.02ms step:262/1750 train_loss:4.0195 train_time:37809ms step_avg:150.03ms step:263/1750 train_loss:3.9180 train_time:37962ms step_avg:150.05ms step:264/1750 train_loss:4.0139 train_time:38115ms step_avg:150.06ms step:265/1750 train_loss:3.8921 train_time:38268ms step_avg:150.07ms step:266/1750 train_loss:3.9539 train_time:38419ms step_avg:150.07ms step:267/1750 train_loss:3.9522 train_time:38573ms step_avg:150.09ms step:268/1750 train_loss:3.9814 train_time:38725ms step_avg:150.10ms step:269/1750 train_loss:3.8802 train_time:38878ms step_avg:150.11ms step:270/1750 train_loss:4.1190 train_time:39031ms step_avg:150.12ms step:271/1750 train_loss:4.0007 train_time:39183ms step_avg:150.13ms step:272/1750 train_loss:3.9590 train_time:39336ms step_avg:150.14ms step:273/1750 train_loss:3.9899 train_time:39488ms step_avg:150.14ms step:274/1750 train_loss:4.0589 train_time:39641ms step_avg:150.16ms step:275/1750 train_loss:4.0832 train_time:39794ms step_avg:150.17ms step:276/1750 train_loss:4.2500 train_time:39947ms step_avg:150.18ms step:277/1750 train_loss:4.0591 train_time:40100ms step_avg:150.19ms step:278/1750 train_loss:4.1131 train_time:40253ms step_avg:150.20ms step:279/1750 train_loss:4.0144 train_time:40406ms step_avg:150.21ms step:280/1750 train_loss:4.2016 train_time:40560ms step_avg:150.22ms step:281/1750 train_loss:3.9922 train_time:40712ms step_avg:150.23ms step:282/1750 train_loss:3.9644 train_time:40865ms step_avg:150.24ms step:283/1750 train_loss:3.9320 train_time:41017ms step_avg:150.25ms step:284/1750 train_loss:4.0718 train_time:41170ms step_avg:150.26ms step:285/1750 train_loss:4.0895 train_time:41321ms step_avg:150.26ms step:286/1750 train_loss:4.1085 train_time:41475ms step_avg:150.27ms step:287/1750 train_loss:3.9361 train_time:41628ms step_avg:150.28ms step:288/1750 train_loss:4.0355 train_time:41781ms step_avg:150.29ms step:289/1750 train_loss:3.9032 train_time:41935ms step_avg:150.30ms step:290/1750 train_loss:3.8801 train_time:42087ms step_avg:150.31ms step:291/1750 train_loss:3.9385 train_time:42241ms step_avg:150.32ms step:292/1750 train_loss:3.8894 train_time:42393ms step_avg:150.33ms step:293/1750 train_loss:3.9270 train_time:42545ms step_avg:150.33ms step:294/1750 train_loss:3.9656 train_time:42698ms step_avg:150.34ms step:295/1750 train_loss:3.8600 train_time:42850ms step_avg:150.35ms step:296/1750 train_loss:3.8868 train_time:43004ms step_avg:150.36ms step:297/1750 train_loss:3.8973 train_time:43158ms step_avg:150.38ms step:298/1750 train_loss:3.9980 train_time:43311ms step_avg:150.39ms step:299/1750 train_loss:3.8486 train_time:43464ms step_avg:150.39ms step:300/1750 train_loss:3.9956 train_time:43617ms step_avg:150.40ms step:301/1750 train_loss:3.9932 train_time:43769ms step_avg:150.41ms step:302/1750 train_loss:3.9606 train_time:43921ms step_avg:150.41ms step:303/1750 train_loss:4.0099 train_time:44074ms step_avg:150.42ms step:304/1750 train_loss:3.9926 train_time:44225ms step_avg:150.43ms step:305/1750 train_loss:4.4777 train_time:44378ms step_avg:150.43ms step:306/1750 train_loss:3.9605 train_time:44530ms step_avg:150.44ms step:307/1750 train_loss:3.8574 train_time:44683ms step_avg:150.45ms step:308/1750 train_loss:4.0120 train_time:44836ms step_avg:150.46ms step:309/1750 train_loss:3.8951 train_time:44989ms step_avg:150.46ms step:310/1750 train_loss:4.1108 train_time:45141ms step_avg:150.47ms step:311/1750 train_loss:3.9564 train_time:45293ms step_avg:150.48ms step:312/1750 train_loss:3.8918 train_time:45445ms step_avg:150.48ms step:313/1750 train_loss:3.9643 train_time:45599ms step_avg:150.49ms step:314/1750 train_loss:4.0936 train_time:45749ms step_avg:150.49ms step:315/1750 train_loss:3.9681 train_time:45903ms step_avg:150.50ms step:316/1750 train_loss:3.8199 train_time:46057ms step_avg:150.51ms step:317/1750 train_loss:3.9009 train_time:46210ms step_avg:150.52ms step:318/1750 train_loss:3.9515 train_time:46363ms step_avg:150.53ms step:319/1750 train_loss:3.9144 train_time:46516ms step_avg:150.54ms step:320/1750 train_loss:4.0385 train_time:46668ms step_avg:150.54ms step:321/1750 train_loss:3.9792 train_time:46820ms step_avg:150.55ms step:322/1750 train_loss:3.9566 train_time:46974ms step_avg:150.56ms step:323/1750 train_loss:4.0314 train_time:47125ms step_avg:150.56ms step:324/1750 train_loss:3.9674 train_time:47279ms step_avg:150.57ms step:325/1750 train_loss:4.0413 train_time:47432ms step_avg:150.58ms step:326/1750 train_loss:3.9121 train_time:47583ms step_avg:150.58ms step:327/1750 train_loss:4.4148 train_time:47736ms step_avg:150.59ms step:328/1750 train_loss:4.0935 train_time:47887ms step_avg:150.59ms step:329/1750 train_loss:3.8215 train_time:48040ms step_avg:150.59ms step:330/1750 train_loss:3.7692 train_time:48192ms step_avg:150.60ms step:331/1750 train_loss:4.0042 train_time:48344ms step_avg:150.60ms step:332/1750 train_loss:3.9314 train_time:48496ms step_avg:150.61ms step:333/1750 train_loss:3.9088 train_time:48647ms step_avg:150.61ms step:334/1750 train_loss:3.8635 train_time:48799ms step_avg:150.62ms step:335/1750 train_loss:4.0311 train_time:48952ms step_avg:150.62ms step:336/1750 train_loss:3.9771 train_time:49104ms step_avg:150.63ms step:337/1750 train_loss:4.4377 train_time:49257ms step_avg:150.63ms step:338/1750 train_loss:3.9588 train_time:49409ms step_avg:150.64ms step:339/1750 train_loss:3.8811 train_time:49561ms step_avg:150.64ms step:340/1750 train_loss:3.9563 train_time:49713ms step_avg:150.65ms step:341/1750 train_loss:3.8855 train_time:49865ms step_avg:150.65ms step:342/1750 train_loss:3.8353 train_time:50016ms step_avg:150.65ms step:343/1750 train_loss:3.8606 train_time:50170ms step_avg:150.66ms step:344/1750 train_loss:4.0127 train_time:50321ms step_avg:150.66ms step:345/1750 train_loss:3.8382 train_time:50475ms step_avg:150.67ms step:346/1750 train_loss:3.7932 train_time:50626ms step_avg:150.67ms step:347/1750 train_loss:3.8214 train_time:50778ms step_avg:150.68ms step:348/1750 train_loss:3.8751 train_time:50930ms step_avg:150.68ms step:349/1750 train_loss:3.8520 train_time:51082ms step_avg:150.69ms step:350/1750 train_loss:3.5925 train_time:51235ms step_avg:150.69ms step:351/1750 train_loss:3.8523 train_time:51386ms step_avg:150.69ms step:352/1750 train_loss:4.2137 train_time:51538ms step_avg:150.70ms step:353/1750 train_loss:3.6772 train_time:51689ms step_avg:150.70ms step:354/1750 train_loss:3.9490 train_time:51841ms step_avg:150.70ms step:355/1750 train_loss:3.8082 train_time:51993ms step_avg:150.70ms step:356/1750 train_loss:3.9056 train_time:52144ms step_avg:150.71ms step:357/1750 train_loss:3.7955 train_time:52298ms step_avg:150.71ms step:358/1750 train_loss:3.8811 train_time:52450ms step_avg:150.72ms step:359/1750 train_loss:3.8028 train_time:52602ms step_avg:150.72ms step:360/1750 train_loss:3.4468 train_time:52756ms step_avg:150.73ms step:361/1750 train_loss:4.0496 train_time:52908ms step_avg:150.74ms step:362/1750 train_loss:3.9505 train_time:53061ms step_avg:150.74ms step:363/1750 train_loss:3.8707 train_time:53213ms step_avg:150.74ms step:364/1750 train_loss:3.7708 train_time:53365ms step_avg:150.75ms step:365/1750 train_loss:3.9394 train_time:53517ms step_avg:150.75ms step:366/1750 train_loss:3.8921 train_time:53670ms step_avg:150.76ms step:367/1750 train_loss:3.8755 train_time:53823ms step_avg:150.76ms step:368/1750 train_loss:3.8739 train_time:53978ms step_avg:150.78ms step:369/1750 train_loss:3.7647 train_time:54129ms step_avg:150.78ms step:370/1750 train_loss:3.9134 train_time:54281ms step_avg:150.78ms step:371/1750 train_loss:3.7627 train_time:54434ms step_avg:150.79ms step:372/1750 train_loss:3.7167 train_time:54585ms step_avg:150.79ms step:373/1750 train_loss:3.9429 train_time:54738ms step_avg:150.79ms step:374/1750 train_loss:3.8591 train_time:54891ms step_avg:150.80ms step:375/1750 train_loss:3.8263 train_time:55042ms step_avg:150.80ms step:375/1750 val_loss:3.8523 train_time:55081ms step_avg:150.91ms step:376/1750 train_loss:3.8993 train_time:55198ms step_avg:150.81ms step:377/1750 train_loss:3.8171 train_time:55475ms step_avg:151.16ms step:378/1750 train_loss:3.8669 train_time:55634ms step_avg:151.18ms step:379/1750 train_loss:3.8990 train_time:56025ms step_avg:151.83ms step:380/1750 train_loss:3.9869 train_time:56186ms step_avg:151.85ms step:381/1750 train_loss:3.8678 train_time:56338ms step_avg:151.85ms step:382/1750 train_loss:3.8391 train_time:56491ms step_avg:151.86ms step:383/1750 train_loss:3.8239 train_time:56645ms step_avg:151.86ms step:384/1750 train_loss:3.8913 train_time:56794ms step_avg:151.86ms step:385/1750 train_loss:3.8163 train_time:56947ms step_avg:151.86ms step:386/1750 train_loss:3.9195 train_time:57098ms step_avg:151.86ms step:387/1750 train_loss:4.0953 train_time:57250ms step_avg:151.86ms step:388/1750 train_loss:3.8207 train_time:57403ms step_avg:151.86ms step:389/1750 train_loss:3.8236 train_time:57554ms step_avg:151.86ms step:390/1750 train_loss:3.9129 train_time:57708ms step_avg:151.86ms step:391/1750 train_loss:3.8348 train_time:57863ms step_avg:151.87ms step:392/1750 train_loss:3.9395 train_time:58017ms step_avg:151.88ms step:393/1750 train_loss:3.7779 train_time:58172ms step_avg:151.89ms step:394/1750 train_loss:3.9098 train_time:58326ms step_avg:151.89ms step:395/1750 train_loss:3.6465 train_time:58482ms step_avg:151.90ms step:396/1750 train_loss:3.8540 train_time:58637ms step_avg:151.91ms step:397/1750 train_loss:3.8892 train_time:58793ms step_avg:151.92ms step:398/1750 train_loss:3.9016 train_time:58949ms step_avg:151.93ms step:399/1750 train_loss:3.7932 train_time:59104ms step_avg:151.94ms step:400/1750 train_loss:3.8489 train_time:59259ms step_avg:151.95ms step:401/1750 train_loss:3.9336 train_time:59412ms step_avg:151.95ms step:402/1750 train_loss:3.8610 train_time:59568ms step_avg:151.96ms step:403/1750 train_loss:3.9766 train_time:59723ms step_avg:151.97ms step:404/1750 train_loss:3.7013 train_time:59877ms step_avg:151.97ms step:405/1750 train_loss:3.8089 train_time:60030ms step_avg:151.98ms step:406/1750 train_loss:4.1219 train_time:60186ms step_avg:151.98ms step:407/1750 train_loss:3.8011 train_time:60341ms step_avg:151.99ms step:408/1750 train_loss:3.8405 train_time:60494ms step_avg:151.99ms step:409/1750 train_loss:3.8818 train_time:60648ms step_avg:152.00ms step:410/1750 train_loss:3.7772 train_time:60804ms step_avg:152.01ms step:411/1750 train_loss:3.7873 train_time:60959ms step_avg:152.02ms step:412/1750 train_loss:4.2206 train_time:61114ms step_avg:152.02ms step:413/1750 train_loss:3.7278 train_time:61271ms step_avg:152.04ms step:414/1750 train_loss:4.0354 train_time:61425ms step_avg:152.04ms step:415/1750 train_loss:3.7762 train_time:61579ms step_avg:152.05ms step:416/1750 train_loss:3.7900 train_time:61733ms step_avg:152.05ms step:417/1750 train_loss:3.9764 train_time:61890ms step_avg:152.06ms step:418/1750 train_loss:3.7154 train_time:62045ms step_avg:152.07ms step:419/1750 train_loss:3.8252 train_time:62199ms step_avg:152.08ms step:420/1750 train_loss:3.7309 train_time:62354ms step_avg:152.08ms step:421/1750 train_loss:3.6652 train_time:62508ms step_avg:152.09ms step:422/1750 train_loss:3.7975 train_time:62661ms step_avg:152.09ms step:423/1750 train_loss:3.8923 train_time:62816ms step_avg:152.10ms step:424/1750 train_loss:3.6348 train_time:62971ms step_avg:152.10ms step:425/1750 train_loss:3.8251 train_time:63125ms step_avg:152.11ms step:426/1750 train_loss:3.6933 train_time:63279ms step_avg:152.11ms step:427/1750 train_loss:3.9183 train_time:63431ms step_avg:152.11ms step:428/1750 train_loss:3.8395 train_time:63587ms step_avg:152.12ms step:429/1750 train_loss:3.7744 train_time:63741ms step_avg:152.13ms step:430/1750 train_loss:3.7357 train_time:63895ms step_avg:152.13ms step:431/1750 train_loss:3.6510 train_time:64050ms step_avg:152.14ms step:432/1750 train_loss:3.7912 train_time:64207ms step_avg:152.15ms step:433/1750 train_loss:3.8488 train_time:64361ms step_avg:152.15ms step:434/1750 train_loss:3.8015 train_time:64516ms step_avg:152.16ms step:435/1750 train_loss:3.8323 train_time:64671ms step_avg:152.17ms step:436/1750 train_loss:3.8632 train_time:64825ms step_avg:152.17ms step:437/1750 train_loss:3.7369 train_time:64981ms step_avg:152.18ms step:438/1750 train_loss:3.7306 train_time:65135ms step_avg:152.18ms step:439/1750 train_loss:3.7377 train_time:65290ms step_avg:152.19ms step:440/1750 train_loss:3.9245 train_time:65445ms step_avg:152.20ms step:441/1750 train_loss:3.7877 train_time:65598ms step_avg:152.20ms step:442/1750 train_loss:3.7576 train_time:65753ms step_avg:152.21ms step:443/1750 train_loss:3.6468 train_time:65907ms step_avg:152.21ms step:444/1750 train_loss:3.9478 train_time:66061ms step_avg:152.21ms step:445/1750 train_loss:3.8724 train_time:66215ms step_avg:152.22ms step:446/1750 train_loss:3.8599 train_time:66371ms step_avg:152.23ms step:447/1750 train_loss:3.7740 train_time:66525ms step_avg:152.23ms step:448/1750 train_loss:3.8719 train_time:66680ms step_avg:152.24ms step:449/1750 train_loss:3.7173 train_time:66835ms step_avg:152.24ms step:450/1750 train_loss:3.7356 train_time:66990ms step_avg:152.25ms step:451/1750 train_loss:3.6045 train_time:67146ms step_avg:152.26ms step:452/1750 train_loss:3.7321 train_time:67299ms step_avg:152.26ms step:453/1750 train_loss:3.7021 train_time:67455ms step_avg:152.27ms step:454/1750 train_loss:3.6590 train_time:67609ms step_avg:152.27ms step:455/1750 train_loss:3.8649 train_time:67764ms step_avg:152.28ms step:456/1750 train_loss:3.7525 train_time:67917ms step_avg:152.28ms step:457/1750 train_loss:3.8116 train_time:68072ms step_avg:152.29ms step:458/1750 train_loss:3.8586 train_time:68225ms step_avg:152.29ms step:459/1750 train_loss:3.6597 train_time:68381ms step_avg:152.30ms step:460/1750 train_loss:3.8175 train_time:68533ms step_avg:152.30ms step:461/1750 train_loss:3.7150 train_time:68688ms step_avg:152.30ms step:462/1750 train_loss:3.7546 train_time:68843ms step_avg:152.31ms step:463/1750 train_loss:3.7964 train_time:68996ms step_avg:152.31ms step:464/1750 train_loss:3.7412 train_time:69150ms step_avg:152.31ms step:465/1750 train_loss:3.7406 train_time:69304ms step_avg:152.32ms step:466/1750 train_loss:3.8260 train_time:69457ms step_avg:152.32ms step:467/1750 train_loss:3.8458 train_time:69612ms step_avg:152.32ms step:468/1750 train_loss:3.8168 train_time:69767ms step_avg:152.33ms step:469/1750 train_loss:3.7051 train_time:69920ms step_avg:152.33ms step:470/1750 train_loss:3.7988 train_time:70073ms step_avg:152.33ms step:471/1750 train_loss:3.8371 train_time:70227ms step_avg:152.34ms step:472/1750 train_loss:3.8000 train_time:70382ms step_avg:152.34ms step:473/1750 train_loss:3.7453 train_time:70535ms step_avg:152.34ms step:474/1750 train_loss:3.6120 train_time:70689ms step_avg:152.35ms step:475/1750 train_loss:4.0186 train_time:70842ms step_avg:152.35ms step:476/1750 train_loss:3.7835 train_time:70997ms step_avg:152.35ms step:477/1750 train_loss:3.6162 train_time:71151ms step_avg:152.36ms step:478/1750 train_loss:3.8465 train_time:71305ms step_avg:152.36ms step:479/1750 train_loss:3.7955 train_time:71459ms step_avg:152.36ms step:480/1750 train_loss:3.9419 train_time:71612ms step_avg:152.37ms step:481/1750 train_loss:3.7509 train_time:71767ms step_avg:152.37ms step:482/1750 train_loss:3.5516 train_time:71921ms step_avg:152.38ms step:483/1750 train_loss:3.8383 train_time:72074ms step_avg:152.38ms step:484/1750 train_loss:3.6870 train_time:72228ms step_avg:152.38ms step:485/1750 train_loss:3.6846 train_time:72383ms step_avg:152.38ms step:486/1750 train_loss:3.6084 train_time:72536ms step_avg:152.39ms step:487/1750 train_loss:3.7039 train_time:72690ms step_avg:152.39ms step:488/1750 train_loss:3.9031 train_time:72844ms step_avg:152.39ms step:489/1750 train_loss:3.7402 train_time:72998ms step_avg:152.40ms step:490/1750 train_loss:3.6145 train_time:73151ms step_avg:152.40ms step:491/1750 train_loss:3.6376 train_time:73305ms step_avg:152.40ms step:492/1750 train_loss:3.7557 train_time:73458ms step_avg:152.40ms step:493/1750 train_loss:3.5993 train_time:73613ms step_avg:152.41ms step:494/1750 train_loss:3.7254 train_time:73767ms step_avg:152.41ms step:495/1750 train_loss:3.6753 train_time:73923ms step_avg:152.42ms step:496/1750 train_loss:3.5474 train_time:74077ms step_avg:152.42ms step:497/1750 train_loss:3.7545 train_time:74228ms step_avg:152.42ms step:498/1750 train_loss:3.8061 train_time:74384ms step_avg:152.43ms step:499/1750 train_loss:3.8496 train_time:74538ms step_avg:152.43ms step:500/1750 train_loss:3.7535 train_time:74692ms step_avg:152.43ms step:500/1750 val_loss:3.7289 train_time:74732ms step_avg:152.51ms step:501/1750 train_loss:3.8270 train_time:74847ms step_avg:152.44ms step:502/1750 train_loss:3.7712 train_time:75003ms step_avg:152.45ms step:503/1750 train_loss:3.7976 train_time:75157ms step_avg:152.45ms step:504/1750 train_loss:3.7512 train_time:75311ms step_avg:152.45ms step:505/1750 train_loss:3.8252 train_time:75466ms step_avg:152.46ms step:506/1750 train_loss:3.6712 train_time:75621ms step_avg:152.46ms step:507/1750 train_loss:3.7904 train_time:75773ms step_avg:152.46ms step:508/1750 train_loss:3.8569 train_time:75928ms step_avg:152.47ms step:509/1750 train_loss:3.7963 train_time:76082ms step_avg:152.47ms step:510/1750 train_loss:3.6038 train_time:76236ms step_avg:152.47ms step:511/1750 train_loss:3.8020 train_time:76389ms step_avg:152.47ms step:512/1750 train_loss:3.7535 train_time:76544ms step_avg:152.48ms step:513/1750 train_loss:3.6873 train_time:76698ms step_avg:152.48ms step:514/1750 train_loss:3.8212 train_time:76852ms step_avg:152.48ms step:515/1750 train_loss:3.7607 train_time:77007ms step_avg:152.49ms step:516/1750 train_loss:4.0987 train_time:77161ms step_avg:152.49ms step:517/1750 train_loss:3.7115 train_time:77315ms step_avg:152.49ms step:518/1750 train_loss:3.8005 train_time:77468ms step_avg:152.50ms step:519/1750 train_loss:3.6882 train_time:77623ms step_avg:152.50ms step:520/1750 train_loss:3.7065 train_time:77778ms step_avg:152.51ms step:521/1750 train_loss:3.6783 train_time:77934ms step_avg:152.51ms step:522/1750 train_loss:3.6796 train_time:78091ms step_avg:152.52ms step:523/1750 train_loss:4.3054 train_time:78247ms step_avg:152.53ms step:524/1750 train_loss:3.7597 train_time:78403ms step_avg:152.53ms step:525/1750 train_loss:3.7069 train_time:78558ms step_avg:152.54ms step:526/1750 train_loss:3.7161 train_time:78715ms step_avg:152.55ms step:527/1750 train_loss:3.6870 train_time:78871ms step_avg:152.56ms step:528/1750 train_loss:3.6526 train_time:79027ms step_avg:152.56ms step:529/1750 train_loss:3.8681 train_time:79185ms step_avg:152.57ms step:530/1750 train_loss:3.6631 train_time:79340ms step_avg:152.58ms step:531/1750 train_loss:3.9400 train_time:79498ms step_avg:152.59ms step:532/1750 train_loss:3.7520 train_time:79654ms step_avg:152.59ms step:533/1750 train_loss:3.6760 train_time:79811ms step_avg:152.60ms step:534/1750 train_loss:3.6941 train_time:79966ms step_avg:152.61ms step:535/1750 train_loss:3.6273 train_time:80125ms step_avg:152.62ms step:536/1750 train_loss:3.7768 train_time:80284ms step_avg:152.63ms step:537/1750 train_loss:3.7485 train_time:80439ms step_avg:152.64ms step:538/1750 train_loss:3.6494 train_time:80596ms step_avg:152.64ms step:539/1750 train_loss:4.1266 train_time:80754ms step_avg:152.65ms step:540/1750 train_loss:3.7004 train_time:80909ms step_avg:152.66ms step:541/1750 train_loss:3.8105 train_time:81065ms step_avg:152.66ms step:542/1750 train_loss:3.6226 train_time:81222ms step_avg:152.67ms step:543/1750 train_loss:3.6066 train_time:81379ms step_avg:152.68ms step:544/1750 train_loss:3.6649 train_time:81535ms step_avg:152.69ms step:545/1750 train_loss:3.6138 train_time:81692ms step_avg:152.70ms step:546/1750 train_loss:3.6555 train_time:81850ms step_avg:152.70ms step:547/1750 train_loss:3.6695 train_time:82006ms step_avg:152.71ms step:548/1750 train_loss:3.6398 train_time:82165ms step_avg:152.72ms step:549/1750 train_loss:3.7457 train_time:82319ms step_avg:152.73ms step:550/1750 train_loss:3.6414 train_time:82478ms step_avg:152.74ms step:551/1750 train_loss:3.6533 train_time:82633ms step_avg:152.74ms step:552/1750 train_loss:3.9523 train_time:82790ms step_avg:152.75ms step:553/1750 train_loss:3.7808 train_time:82947ms step_avg:152.76ms step:554/1750 train_loss:3.7406 train_time:83105ms step_avg:152.77ms step:555/1750 train_loss:3.6614 train_time:83262ms step_avg:152.78ms step:556/1750 train_loss:3.7229 train_time:83418ms step_avg:152.78ms step:557/1750 train_loss:3.3403 train_time:83576ms step_avg:152.79ms step:558/1750 train_loss:3.6335 train_time:83731ms step_avg:152.79ms step:559/1750 train_loss:3.6698 train_time:83887ms step_avg:152.80ms step:560/1750 train_loss:3.7086 train_time:84044ms step_avg:152.81ms step:561/1750 train_loss:3.6337 train_time:84201ms step_avg:152.81ms step:562/1750 train_loss:3.5860 train_time:84357ms step_avg:152.82ms step:563/1750 train_loss:3.7765 train_time:84512ms step_avg:152.83ms step:564/1750 train_loss:3.5949 train_time:84669ms step_avg:152.83ms step:565/1750 train_loss:3.7065 train_time:84826ms step_avg:152.84ms step:566/1750 train_loss:3.6450 train_time:85101ms step_avg:153.06ms step:567/1750 train_loss:3.6257 train_time:85266ms step_avg:153.08ms step:568/1750 train_loss:3.7115 train_time:85422ms step_avg:153.09ms step:569/1750 train_loss:3.6721 train_time:85728ms step_avg:153.36ms step:570/1750 train_loss:3.7168 train_time:85889ms step_avg:153.37ms step:571/1750 train_loss:3.7877 train_time:86045ms step_avg:153.38ms step:572/1750 train_loss:3.7534 train_time:86202ms step_avg:153.38ms step:573/1750 train_loss:3.7564 train_time:86357ms step_avg:153.39ms step:574/1750 train_loss:3.8054 train_time:86515ms step_avg:153.40ms step:575/1750 train_loss:3.7490 train_time:86671ms step_avg:153.40ms step:576/1750 train_loss:3.7845 train_time:86827ms step_avg:153.40ms step:577/1750 train_loss:3.6983 train_time:86984ms step_avg:153.41ms step:578/1750 train_loss:3.6928 train_time:87139ms step_avg:153.41ms step:579/1750 train_loss:3.6924 train_time:87295ms step_avg:153.42ms step:580/1750 train_loss:3.6172 train_time:87452ms step_avg:153.42ms step:581/1750 train_loss:3.6602 train_time:87610ms step_avg:153.43ms step:582/1750 train_loss:3.8788 train_time:87767ms step_avg:153.44ms step:583/1750 train_loss:3.6584 train_time:87924ms step_avg:153.45ms step:584/1750 train_loss:3.6196 train_time:88080ms step_avg:153.45ms step:585/1750 train_loss:3.8097 train_time:88235ms step_avg:153.45ms step:586/1750 train_loss:3.5406 train_time:88392ms step_avg:153.46ms step:587/1750 train_loss:3.6896 train_time:88547ms step_avg:153.46ms step:588/1750 train_loss:3.6708 train_time:88703ms step_avg:153.47ms step:589/1750 train_loss:4.0220 train_time:88860ms step_avg:153.47ms step:590/1750 train_loss:3.8072 train_time:89016ms step_avg:153.48ms step:591/1750 train_loss:3.5299 train_time:89170ms step_avg:153.48ms step:592/1750 train_loss:3.5586 train_time:89327ms step_avg:153.48ms step:593/1750 train_loss:3.5267 train_time:89483ms step_avg:153.49ms step:594/1750 train_loss:3.5797 train_time:89638ms step_avg:153.49ms step:595/1750 train_loss:3.9412 train_time:89794ms step_avg:153.49ms step:596/1750 train_loss:3.6681 train_time:89949ms step_avg:153.50ms step:597/1750 train_loss:3.6065 train_time:90105ms step_avg:153.50ms step:598/1750 train_loss:3.6879 train_time:90260ms step_avg:153.50ms step:599/1750 train_loss:3.4959 train_time:90417ms step_avg:153.51ms step:600/1750 train_loss:3.6216 train_time:90572ms step_avg:153.51ms step:601/1750 train_loss:3.6667 train_time:90727ms step_avg:153.51ms step:602/1750 train_loss:3.6926 train_time:90884ms step_avg:153.52ms step:603/1750 train_loss:3.8072 train_time:91039ms step_avg:153.52ms step:604/1750 train_loss:3.6288 train_time:91194ms step_avg:153.53ms step:605/1750 train_loss:3.6343 train_time:91351ms step_avg:153.53ms step:606/1750 train_loss:3.5977 train_time:91509ms step_avg:153.54ms step:607/1750 train_loss:3.8572 train_time:91667ms step_avg:153.55ms step:608/1750 train_loss:3.6700 train_time:91824ms step_avg:153.55ms step:609/1750 train_loss:3.6364 train_time:91978ms step_avg:153.55ms step:610/1750 train_loss:3.7321 train_time:92132ms step_avg:153.55ms step:611/1750 train_loss:3.6274 train_time:92289ms step_avg:153.56ms step:612/1750 train_loss:3.5922 train_time:92445ms step_avg:153.56ms step:613/1750 train_loss:3.7867 train_time:92603ms step_avg:153.57ms step:614/1750 train_loss:3.7267 train_time:92759ms step_avg:153.57ms step:615/1750 train_loss:3.7188 train_time:92914ms step_avg:153.58ms step:616/1750 train_loss:3.6518 train_time:93068ms step_avg:153.58ms step:617/1750 train_loss:3.5837 train_time:93225ms step_avg:153.58ms step:618/1750 train_loss:3.7115 train_time:93380ms step_avg:153.59ms step:619/1750 train_loss:3.5864 train_time:93536ms step_avg:153.59ms step:620/1750 train_loss:3.6136 train_time:93692ms step_avg:153.59ms step:621/1750 train_loss:3.9424 train_time:93849ms step_avg:153.60ms step:622/1750 train_loss:3.5909 train_time:94005ms step_avg:153.60ms step:623/1750 train_loss:3.6303 train_time:94162ms step_avg:153.61ms step:624/1750 train_loss:3.7175 train_time:94317ms step_avg:153.61ms step:625/1750 train_loss:3.7302 train_time:94471ms step_avg:153.61ms step:625/1750 val_loss:3.6466 train_time:94513ms step_avg:153.68ms step:626/1750 train_loss:3.7637 train_time:94628ms step_avg:153.62ms step:627/1750 train_loss:3.7461 train_time:94785ms step_avg:153.62ms step:628/1750 train_loss:3.7857 train_time:94941ms step_avg:153.63ms step:629/1750 train_loss:3.6160 train_time:95096ms step_avg:153.63ms step:630/1750 train_loss:3.7444 train_time:95251ms step_avg:153.63ms step:631/1750 train_loss:3.7660 train_time:95406ms step_avg:153.63ms step:632/1750 train_loss:3.6764 train_time:95562ms step_avg:153.64ms step:633/1750 train_loss:3.6254 train_time:95717ms step_avg:153.64ms step:634/1750 train_loss:3.7239 train_time:95874ms step_avg:153.64ms step:635/1750 train_loss:3.9797 train_time:96027ms step_avg:153.64ms step:636/1750 train_loss:3.5650 train_time:96184ms step_avg:153.65ms step:637/1750 train_loss:3.3830 train_time:96340ms step_avg:153.65ms step:638/1750 train_loss:3.6154 train_time:96496ms step_avg:153.66ms step:639/1750 train_loss:3.6605 train_time:96652ms step_avg:153.66ms step:640/1750 train_loss:3.5899 train_time:96807ms step_avg:153.66ms step:641/1750 train_loss:3.6134 train_time:96962ms step_avg:153.66ms step:642/1750 train_loss:3.6585 train_time:97118ms step_avg:153.67ms step:643/1750 train_loss:3.6327 train_time:97275ms step_avg:153.67ms step:644/1750 train_loss:3.5752 train_time:97429ms step_avg:153.67ms step:645/1750 train_loss:3.8002 train_time:97586ms step_avg:153.68ms step:646/1750 train_loss:3.7008 train_time:97742ms step_avg:153.68ms step:647/1750 train_loss:3.6884 train_time:97897ms step_avg:153.68ms step:648/1750 train_loss:3.7344 train_time:98054ms step_avg:153.69ms step:649/1750 train_loss:3.7878 train_time:98208ms step_avg:153.69ms step:650/1750 train_loss:3.6411 train_time:98367ms step_avg:153.70ms step:651/1750 train_loss:3.7882 train_time:98525ms step_avg:153.71ms step:652/1750 train_loss:3.6095 train_time:98684ms step_avg:153.71ms step:653/1750 train_loss:3.6853 train_time:98841ms step_avg:153.72ms step:654/1750 train_loss:3.4523 train_time:99000ms step_avg:153.73ms step:655/1750 train_loss:3.5993 train_time:99157ms step_avg:153.73ms step:656/1750 train_loss:3.6003 train_time:99315ms step_avg:153.74ms step:657/1750 train_loss:3.5297 train_time:99476ms step_avg:153.75ms step:658/1750 train_loss:3.7150 train_time:99633ms step_avg:153.75ms step:659/1750 train_loss:3.6119 train_time:99791ms step_avg:153.76ms step:660/1750 train_loss:3.7030 train_time:99951ms step_avg:153.77ms step:661/1750 train_loss:3.7716 train_time:100110ms step_avg:153.78ms step:662/1750 train_loss:3.6851 train_time:100267ms step_avg:153.78ms step:663/1750 train_loss:3.5714 train_time:100422ms step_avg:153.79ms step:664/1750 train_loss:3.6390 train_time:100582ms step_avg:153.79ms step:665/1750 train_loss:3.5161 train_time:100741ms step_avg:153.80ms step:666/1750 train_loss:3.8127 train_time:100898ms step_avg:153.81ms step:667/1750 train_loss:3.6315 train_time:101059ms step_avg:153.82ms step:668/1750 train_loss:3.6693 train_time:101217ms step_avg:153.83ms step:669/1750 train_loss:3.5044 train_time:101376ms step_avg:153.83ms step:670/1750 train_loss:3.6259 train_time:101534ms step_avg:153.84ms step:671/1750 train_loss:3.5862 train_time:101692ms step_avg:153.85ms step:672/1750 train_loss:3.5889 train_time:101851ms step_avg:153.85ms step:673/1750 train_loss:3.8768 train_time:102009ms step_avg:153.86ms step:674/1750 train_loss:3.6521 train_time:102168ms step_avg:153.87ms step:675/1750 train_loss:3.7346 train_time:102326ms step_avg:153.87ms step:676/1750 train_loss:3.5095 train_time:102484ms step_avg:153.88ms step:677/1750 train_loss:3.6221 train_time:102642ms step_avg:153.89ms step:678/1750 train_loss:3.5731 train_time:102799ms step_avg:153.89ms step:679/1750 train_loss:3.7004 train_time:102959ms step_avg:153.90ms step:680/1750 train_loss:3.6078 train_time:103119ms step_avg:153.91ms step:681/1750 train_loss:3.6372 train_time:103277ms step_avg:153.91ms step:682/1750 train_loss:3.6829 train_time:103437ms step_avg:153.92ms step:683/1750 train_loss:3.7570 train_time:103595ms step_avg:153.93ms step:684/1750 train_loss:3.6694 train_time:103756ms step_avg:153.94ms step:685/1750 train_loss:3.7167 train_time:103916ms step_avg:153.95ms step:686/1750 train_loss:3.6604 train_time:104076ms step_avg:153.96ms step:687/1750 train_loss:3.6951 train_time:104234ms step_avg:153.96ms step:688/1750 train_loss:3.2277 train_time:104393ms step_avg:153.97ms step:689/1750 train_loss:3.4264 train_time:104551ms step_avg:153.98ms step:690/1750 train_loss:3.5708 train_time:104713ms step_avg:153.99ms step:691/1750 train_loss:3.4427 train_time:104870ms step_avg:153.99ms step:692/1750 train_loss:3.6557 train_time:105027ms step_avg:154.00ms step:693/1750 train_loss:3.6798 train_time:105186ms step_avg:154.01ms step:694/1750 train_loss:3.5771 train_time:105344ms step_avg:154.01ms step:695/1750 train_loss:3.5615 train_time:105500ms step_avg:154.02ms step:696/1750 train_loss:3.8793 train_time:105660ms step_avg:154.02ms step:697/1750 train_loss:3.6123 train_time:105819ms step_avg:154.03ms step:698/1750 train_loss:3.6754 train_time:105978ms step_avg:154.04ms step:699/1750 train_loss:3.7894 train_time:106138ms step_avg:154.05ms step:700/1750 train_loss:3.5907 train_time:106297ms step_avg:154.05ms step:701/1750 train_loss:3.5672 train_time:106455ms step_avg:154.06ms step:702/1750 train_loss:3.5394 train_time:106614ms step_avg:154.07ms step:703/1750 train_loss:3.5167 train_time:106772ms step_avg:154.07ms step:704/1750 train_loss:3.5961 train_time:106931ms step_avg:154.08ms step:705/1750 train_loss:3.5824 train_time:107092ms step_avg:154.09ms step:706/1750 train_loss:3.6046 train_time:107253ms step_avg:154.10ms step:707/1750 train_loss:3.6772 train_time:107413ms step_avg:154.11ms step:708/1750 train_loss:3.6243 train_time:107573ms step_avg:154.12ms step:709/1750 train_loss:3.6029 train_time:107730ms step_avg:154.12ms step:710/1750 train_loss:3.5655 train_time:107887ms step_avg:154.12ms step:711/1750 train_loss:3.6129 train_time:108046ms step_avg:154.13ms step:712/1750 train_loss:3.6707 train_time:108206ms step_avg:154.14ms step:713/1750 train_loss:3.6840 train_time:108365ms step_avg:154.15ms step:714/1750 train_loss:3.5875 train_time:108522ms step_avg:154.15ms step:715/1750 train_loss:3.5989 train_time:108679ms step_avg:154.15ms step:716/1750 train_loss:3.6106 train_time:108837ms step_avg:154.16ms step:717/1750 train_loss:3.7318 train_time:108996ms step_avg:154.17ms step:718/1750 train_loss:3.6218 train_time:109151ms step_avg:154.17ms step:719/1750 train_loss:3.7029 train_time:109307ms step_avg:154.17ms step:720/1750 train_loss:3.8676 train_time:109468ms step_avg:154.18ms step:721/1750 train_loss:3.4887 train_time:109624ms step_avg:154.18ms step:722/1750 train_loss:3.7523 train_time:109782ms step_avg:154.19ms step:723/1750 train_loss:3.7911 train_time:109939ms step_avg:154.19ms step:724/1750 train_loss:3.5870 train_time:110097ms step_avg:154.20ms step:725/1750 train_loss:3.6751 train_time:110257ms step_avg:154.21ms step:726/1750 train_loss:3.5582 train_time:110418ms step_avg:154.21ms step:727/1750 train_loss:3.5969 train_time:110577ms step_avg:154.22ms step:728/1750 train_loss:3.7601 train_time:110735ms step_avg:154.23ms step:729/1750 train_loss:3.6957 train_time:110891ms step_avg:154.23ms step:730/1750 train_loss:3.6935 train_time:111051ms step_avg:154.24ms step:731/1750 train_loss:3.5839 train_time:111209ms step_avg:154.24ms step:732/1750 train_loss:3.6226 train_time:111366ms step_avg:154.25ms step:733/1750 train_loss:3.8621 train_time:111523ms step_avg:154.25ms step:734/1750 train_loss:3.5830 train_time:111681ms step_avg:154.26ms step:735/1750 train_loss:3.6297 train_time:111837ms step_avg:154.26ms step:736/1750 train_loss:3.7605 train_time:111994ms step_avg:154.26ms step:737/1750 train_loss:3.6997 train_time:112151ms step_avg:154.27ms step:738/1750 train_loss:3.6213 train_time:112310ms step_avg:154.27ms step:739/1750 train_loss:3.5207 train_time:112467ms step_avg:154.28ms step:740/1750 train_loss:4.1379 train_time:112626ms step_avg:154.28ms step:741/1750 train_loss:3.5201 train_time:112782ms step_avg:154.28ms step:742/1750 train_loss:3.5850 train_time:112940ms step_avg:154.29ms step:743/1750 train_loss:3.6070 train_time:113098ms step_avg:154.29ms step:744/1750 train_loss:3.6706 train_time:113258ms step_avg:154.30ms step:745/1750 train_loss:3.6177 train_time:113419ms step_avg:154.31ms step:746/1750 train_loss:3.6168 train_time:113576ms step_avg:154.32ms step:747/1750 train_loss:3.6676 train_time:113734ms step_avg:154.32ms step:748/1750 train_loss:3.5967 train_time:113894ms step_avg:154.33ms step:749/1750 train_loss:3.5864 train_time:114053ms step_avg:154.33ms step:750/1750 train_loss:3.6299 train_time:114210ms step_avg:154.34ms step:750/1750 val_loss:3.5915 train_time:114253ms step_avg:154.40ms step:751/1750 train_loss:3.5917 train_time:114371ms step_avg:154.35ms step:752/1750 train_loss:3.6347 train_time:114530ms step_avg:154.35ms step:753/1750 train_loss:3.6347 train_time:114687ms step_avg:154.36ms step:754/1750 train_loss:3.6147 train_time:114844ms step_avg:154.36ms step:755/1750 train_loss:3.7025 train_time:115123ms step_avg:154.53ms step:756/1750 train_loss:3.4911 train_time:115288ms step_avg:154.54ms step:757/1750 train_loss:3.7501 train_time:115448ms step_avg:154.55ms step:758/1750 train_loss:3.6832 train_time:115606ms step_avg:154.55ms step:759/1750 train_loss:3.6197 train_time:115908ms step_avg:154.75ms step:760/1750 train_loss:3.7267 train_time:116068ms step_avg:154.76ms step:761/1750 train_loss:3.4235 train_time:116227ms step_avg:154.76ms step:762/1750 train_loss:3.5742 train_time:116384ms step_avg:154.77ms step:763/1750 train_loss:3.6890 train_time:116543ms step_avg:154.77ms step:764/1750 train_loss:3.3393 train_time:116699ms step_avg:154.77ms step:765/1750 train_loss:3.7597 train_time:116856ms step_avg:154.78ms step:766/1750 train_loss:3.6067 train_time:117014ms step_avg:154.78ms step:767/1750 train_loss:3.5926 train_time:117173ms step_avg:154.79ms step:768/1750 train_loss:3.5994 train_time:117335ms step_avg:154.80ms step:769/1750 train_loss:3.6158 train_time:117493ms step_avg:154.80ms step:770/1750 train_loss:3.6675 train_time:117651ms step_avg:154.80ms step:771/1750 train_loss:3.8994 train_time:117810ms step_avg:154.81ms step:772/1750 train_loss:3.4758 train_time:117966ms step_avg:154.81ms step:773/1750 train_loss:3.6622 train_time:118124ms step_avg:154.81ms step:774/1750 train_loss:3.6651 train_time:118281ms step_avg:154.82ms step:775/1750 train_loss:3.6323 train_time:118437ms step_avg:154.82ms step:776/1750 train_loss:3.4186 train_time:118595ms step_avg:154.82ms step:777/1750 train_loss:3.4229 train_time:118753ms step_avg:154.83ms step:778/1750 train_loss:3.5154 train_time:118909ms step_avg:154.83ms step:779/1750 train_loss:3.6003 train_time:119068ms step_avg:154.83ms step:780/1750 train_loss:3.6168 train_time:119229ms step_avg:154.84ms step:781/1750 train_loss:3.6921 train_time:119388ms step_avg:154.85ms step:782/1750 train_loss:3.6149 train_time:119548ms step_avg:154.85ms step:783/1750 train_loss:3.5983 train_time:119706ms step_avg:154.86ms step:784/1750 train_loss:3.6247 train_time:119866ms step_avg:154.87ms step:785/1750 train_loss:3.5834 train_time:120024ms step_avg:154.87ms step:786/1750 train_loss:3.4643 train_time:120186ms step_avg:154.88ms step:787/1750 train_loss:3.8141 train_time:120347ms step_avg:154.89ms step:788/1750 train_loss:3.5263 train_time:120507ms step_avg:154.89ms step:789/1750 train_loss:3.5798 train_time:120665ms step_avg:154.90ms step:790/1750 train_loss:3.6543 train_time:120827ms step_avg:154.91ms step:791/1750 train_loss:3.8011 train_time:120988ms step_avg:154.91ms step:792/1750 train_loss:3.7820 train_time:121148ms step_avg:154.92ms step:793/1750 train_loss:3.4979 train_time:121306ms step_avg:154.92ms step:794/1750 train_loss:3.6179 train_time:121469ms step_avg:154.93ms step:795/1750 train_loss:3.6962 train_time:121630ms step_avg:154.94ms step:796/1750 train_loss:3.7605 train_time:121789ms step_avg:154.95ms step:797/1750 train_loss:3.5465 train_time:121948ms step_avg:154.95ms step:798/1750 train_loss:3.6710 train_time:122108ms step_avg:154.96ms step:799/1750 train_loss:3.5672 train_time:122268ms step_avg:154.97ms step:800/1750 train_loss:3.5522 train_time:122427ms step_avg:154.97ms step:801/1750 train_loss:3.6596 train_time:122587ms step_avg:154.98ms step:802/1750 train_loss:3.5183 train_time:122750ms step_avg:154.99ms step:803/1750 train_loss:3.5349 train_time:122908ms step_avg:154.99ms step:804/1750 train_loss:3.6481 train_time:123067ms step_avg:155.00ms step:805/1750 train_loss:3.5500 train_time:123227ms step_avg:155.00ms step:806/1750 train_loss:3.5874 train_time:123385ms step_avg:155.01ms step:807/1750 train_loss:3.6709 train_time:123545ms step_avg:155.01ms step:808/1750 train_loss:3.5765 train_time:123705ms step_avg:155.02ms step:809/1750 train_loss:3.5173 train_time:123866ms step_avg:155.03ms step:810/1750 train_loss:3.5855 train_time:124025ms step_avg:155.03ms step:811/1750 train_loss:3.6165 train_time:124184ms step_avg:155.04ms step:812/1750 train_loss:3.6240 train_time:124345ms step_avg:155.04ms step:813/1750 train_loss:3.6523 train_time:124502ms step_avg:155.05ms step:814/1750 train_loss:3.5952 train_time:124662ms step_avg:155.05ms step:815/1750 train_loss:3.5888 train_time:124823ms step_avg:155.06ms step:816/1750 train_loss:3.7097 train_time:124984ms step_avg:155.07ms step:817/1750 train_loss:3.7926 train_time:125145ms step_avg:155.07ms step:818/1750 train_loss:3.5474 train_time:125303ms step_avg:155.08ms step:819/1750 train_loss:3.7480 train_time:125465ms step_avg:155.09ms step:820/1750 train_loss:3.5283 train_time:125626ms step_avg:155.09ms step:821/1750 train_loss:3.5867 train_time:125784ms step_avg:155.10ms step:822/1750 train_loss:3.7224 train_time:125943ms step_avg:155.10ms step:823/1750 train_loss:3.6027 train_time:126103ms step_avg:155.11ms step:824/1750 train_loss:3.5374 train_time:126261ms step_avg:155.11ms step:825/1750 train_loss:3.6421 train_time:126424ms step_avg:155.12ms step:826/1750 train_loss:3.5053 train_time:126587ms step_avg:155.13ms step:827/1750 train_loss:3.7588 train_time:126747ms step_avg:155.14ms step:828/1750 train_loss:3.6437 train_time:126905ms step_avg:155.14ms step:829/1750 train_loss:3.6550 train_time:127067ms step_avg:155.15ms step:830/1750 train_loss:3.5569 train_time:127227ms step_avg:155.15ms step:831/1750 train_loss:3.6231 train_time:127388ms step_avg:155.16ms step:832/1750 train_loss:3.5387 train_time:127549ms step_avg:155.17ms step:833/1750 train_loss:3.6760 train_time:127709ms step_avg:155.18ms step:834/1750 train_loss:3.5105 train_time:127869ms step_avg:155.18ms step:835/1750 train_loss:3.4868 train_time:128029ms step_avg:155.19ms step:836/1750 train_loss:3.7424 train_time:128188ms step_avg:155.19ms step:837/1750 train_loss:3.4310 train_time:128347ms step_avg:155.20ms step:838/1750 train_loss:3.6104 train_time:128507ms step_avg:155.20ms step:839/1750 train_loss:3.4404 train_time:128666ms step_avg:155.21ms step:840/1750 train_loss:3.4911 train_time:128824ms step_avg:155.21ms step:841/1750 train_loss:3.5949 train_time:128982ms step_avg:155.21ms step:842/1750 train_loss:3.6069 train_time:129142ms step_avg:155.22ms step:843/1750 train_loss:3.5887 train_time:129301ms step_avg:155.22ms step:844/1750 train_loss:3.4517 train_time:129459ms step_avg:155.23ms step:845/1750 train_loss:3.6857 train_time:129619ms step_avg:155.23ms step:846/1750 train_loss:3.5444 train_time:129782ms step_avg:155.24ms step:847/1750 train_loss:3.5228 train_time:129943ms step_avg:155.25ms step:848/1750 train_loss:3.6652 train_time:130102ms step_avg:155.25ms step:849/1750 train_loss:3.5232 train_time:130261ms step_avg:155.26ms step:850/1750 train_loss:3.4641 train_time:130421ms step_avg:155.26ms step:851/1750 train_loss:3.7592 train_time:130582ms step_avg:155.27ms step:852/1750 train_loss:3.4705 train_time:130742ms step_avg:155.28ms step:853/1750 train_loss:3.5892 train_time:130898ms step_avg:155.28ms step:854/1750 train_loss:3.6781 train_time:131056ms step_avg:155.28ms step:855/1750 train_loss:3.5403 train_time:131215ms step_avg:155.28ms step:856/1750 train_loss:3.5670 train_time:131373ms step_avg:155.29ms step:857/1750 train_loss:3.6290 train_time:131534ms step_avg:155.29ms step:858/1750 train_loss:3.5004 train_time:131695ms step_avg:155.30ms step:859/1750 train_loss:3.5871 train_time:131854ms step_avg:155.30ms step:860/1750 train_loss:3.6159 train_time:132011ms step_avg:155.31ms step:861/1750 train_loss:3.6563 train_time:132172ms step_avg:155.31ms step:862/1750 train_loss:3.6260 train_time:132333ms step_avg:155.32ms step:863/1750 train_loss:3.5995 train_time:132494ms step_avg:155.33ms step:864/1750 train_loss:3.4095 train_time:132652ms step_avg:155.33ms step:865/1750 train_loss:3.6260 train_time:132809ms step_avg:155.33ms step:866/1750 train_loss:3.8904 train_time:132971ms step_avg:155.34ms step:867/1750 train_loss:3.4772 train_time:133129ms step_avg:155.34ms step:868/1750 train_loss:3.6630 train_time:133286ms step_avg:155.34ms step:869/1750 train_loss:3.6404 train_time:133445ms step_avg:155.35ms step:870/1750 train_loss:3.4726 train_time:133605ms step_avg:155.35ms step:871/1750 train_loss:3.4413 train_time:133765ms step_avg:155.36ms step:872/1750 train_loss:3.6777 train_time:133927ms step_avg:155.37ms step:873/1750 train_loss:3.4857 train_time:134086ms step_avg:155.37ms step:874/1750 train_loss:3.2426 train_time:134249ms step_avg:155.38ms step:875/1750 train_loss:3.6616 train_time:134408ms step_avg:155.38ms step:875/1750 val_loss:3.5470 train_time:134450ms step_avg:155.43ms step:876/1750 train_loss:3.4696 train_time:134566ms step_avg:155.39ms step:877/1750 train_loss:3.6464 train_time:134727ms step_avg:155.39ms step:878/1750 train_loss:3.4995 train_time:134888ms step_avg:155.40ms step:879/1750 train_loss:3.6733 train_time:135047ms step_avg:155.41ms step:880/1750 train_loss:3.3279 train_time:135207ms step_avg:155.41ms step:881/1750 train_loss:3.5079 train_time:135364ms step_avg:155.41ms step:882/1750 train_loss:3.7246 train_time:135521ms step_avg:155.41ms step:883/1750 train_loss:3.8620 train_time:135681ms step_avg:155.42ms step:884/1750 train_loss:3.5918 train_time:135840ms step_avg:155.42ms step:885/1750 train_loss:3.5098 train_time:135999ms step_avg:155.43ms step:886/1750 train_loss:3.5978 train_time:136157ms step_avg:155.43ms step:887/1750 train_loss:4.0988 train_time:136318ms step_avg:155.44ms step:888/1750 train_loss:3.8580 train_time:136481ms step_avg:155.45ms step:889/1750 train_loss:3.5547 train_time:136638ms step_avg:155.45ms step:890/1750 train_loss:3.5624 train_time:136797ms step_avg:155.45ms step:891/1750 train_loss:3.3875 train_time:136956ms step_avg:155.45ms step:892/1750 train_loss:3.7419 train_time:137115ms step_avg:155.46ms step:893/1750 train_loss:3.4482 train_time:137271ms step_avg:155.46ms step:894/1750 train_loss:3.6603 train_time:137432ms step_avg:155.47ms step:895/1750 train_loss:3.7041 train_time:137592ms step_avg:155.47ms step:896/1750 train_loss:3.5264 train_time:137752ms step_avg:155.48ms step:897/1750 train_loss:3.5653 train_time:137912ms step_avg:155.48ms step:898/1750 train_loss:3.6205 train_time:138071ms step_avg:155.48ms step:899/1750 train_loss:3.5081 train_time:138228ms step_avg:155.49ms step:900/1750 train_loss:3.4426 train_time:138387ms step_avg:155.49ms step:901/1750 train_loss:3.6456 train_time:138545ms step_avg:155.49ms step:902/1750 train_loss:3.6575 train_time:138703ms step_avg:155.50ms step:903/1750 train_loss:3.5686 train_time:138865ms step_avg:155.50ms step:904/1750 train_loss:3.5264 train_time:139024ms step_avg:155.51ms step:905/1750 train_loss:3.5320 train_time:139184ms step_avg:155.51ms step:906/1750 train_loss:3.7374 train_time:139345ms step_avg:155.52ms step:907/1750 train_loss:3.5397 train_time:139507ms step_avg:155.53ms step:908/1750 train_loss:3.5978 train_time:139663ms step_avg:155.53ms step:909/1750 train_loss:3.4789 train_time:139825ms step_avg:155.53ms step:910/1750 train_loss:3.5514 train_time:139991ms step_avg:155.55ms step:911/1750 train_loss:3.6675 train_time:140151ms step_avg:155.55ms step:912/1750 train_loss:3.6281 train_time:140313ms step_avg:155.56ms step:913/1750 train_loss:3.4861 train_time:140476ms step_avg:155.57ms step:914/1750 train_loss:3.7723 train_time:140638ms step_avg:155.57ms step:915/1750 train_loss:3.5558 train_time:140800ms step_avg:155.58ms step:916/1750 train_loss:3.6453 train_time:140960ms step_avg:155.58ms step:917/1750 train_loss:3.6261 train_time:141121ms step_avg:155.59ms step:918/1750 train_loss:4.8559 train_time:141285ms step_avg:155.60ms step:919/1750 train_loss:3.5167 train_time:141448ms step_avg:155.61ms step:920/1750 train_loss:3.6126 train_time:141608ms step_avg:155.61ms step:921/1750 train_loss:3.5735 train_time:141769ms step_avg:155.62ms step:922/1750 train_loss:3.6101 train_time:141933ms step_avg:155.63ms step:923/1750 train_loss:3.6352 train_time:142094ms step_avg:155.63ms step:924/1750 train_loss:3.7108 train_time:142255ms step_avg:155.64ms step:925/1750 train_loss:3.6753 train_time:142416ms step_avg:155.65ms step:926/1750 train_loss:3.5840 train_time:142575ms step_avg:155.65ms step:927/1750 train_loss:3.5786 train_time:142735ms step_avg:155.65ms step:928/1750 train_loss:3.8092 train_time:142897ms step_avg:155.66ms step:929/1750 train_loss:3.6370 train_time:143056ms step_avg:155.66ms step:930/1750 train_loss:3.4250 train_time:143218ms step_avg:155.67ms step:931/1750 train_loss:3.5202 train_time:143376ms step_avg:155.67ms step:932/1750 train_loss:3.6795 train_time:143538ms step_avg:155.68ms step:933/1750 train_loss:3.4017 train_time:143699ms step_avg:155.69ms step:934/1750 train_loss:3.6122 train_time:143860ms step_avg:155.69ms step:935/1750 train_loss:3.4638 train_time:144023ms step_avg:155.70ms step:936/1750 train_loss:3.5417 train_time:144186ms step_avg:155.71ms step:937/1750 train_loss:3.6490 train_time:144350ms step_avg:155.72ms step:938/1750 train_loss:3.5669 train_time:144510ms step_avg:155.72ms step:939/1750 train_loss:3.6966 train_time:144675ms step_avg:155.73ms step:940/1750 train_loss:3.5082 train_time:144835ms step_avg:155.74ms step:941/1750 train_loss:3.5744 train_time:144995ms step_avg:155.74ms step:942/1750 train_loss:3.3885 train_time:145155ms step_avg:155.75ms step:943/1750 train_loss:3.7305 train_time:145319ms step_avg:155.75ms step:944/1750 train_loss:3.4333 train_time:145629ms step_avg:155.92ms step:945/1750 train_loss:3.4543 train_time:145797ms step_avg:155.93ms step:946/1750 train_loss:5.1047 train_time:145959ms step_avg:155.94ms step:947/1750 train_loss:3.6252 train_time:146119ms step_avg:155.94ms step:948/1750 train_loss:3.5068 train_time:146280ms step_avg:155.95ms step:949/1750 train_loss:3.4063 train_time:146583ms step_avg:156.11ms step:950/1750 train_loss:3.4626 train_time:146745ms step_avg:156.11ms step:951/1750 train_loss:3.4405 train_time:146911ms step_avg:156.12ms step:952/1750 train_loss:3.5061 train_time:147073ms step_avg:156.13ms step:953/1750 train_loss:3.5980 train_time:147235ms step_avg:156.13ms step:954/1750 train_loss:3.4748 train_time:147398ms step_avg:156.14ms step:955/1750 train_loss:3.5014 train_time:147557ms step_avg:156.14ms step:956/1750 train_loss:3.4694 train_time:147719ms step_avg:156.15ms step:957/1750 train_loss:3.5294 train_time:147881ms step_avg:156.16ms step:958/1750 train_loss:3.5309 train_time:148045ms step_avg:156.17ms step:959/1750 train_loss:3.5357 train_time:148206ms step_avg:156.17ms step:960/1750 train_loss:3.4323 train_time:148367ms step_avg:156.18ms step:961/1750 train_loss:3.6851 train_time:148527ms step_avg:156.18ms step:962/1750 train_loss:3.6345 train_time:148687ms step_avg:156.18ms step:963/1750 train_loss:3.7305 train_time:148851ms step_avg:156.19ms step:964/1750 train_loss:3.4584 train_time:149014ms step_avg:156.20ms step:965/1750 train_loss:3.5113 train_time:149172ms step_avg:156.20ms step:966/1750 train_loss:3.7455 train_time:149334ms step_avg:156.21ms step:967/1750 train_loss:3.5555 train_time:149497ms step_avg:156.21ms step:968/1750 train_loss:3.5518 train_time:149657ms step_avg:156.22ms step:969/1750 train_loss:3.6151 train_time:149819ms step_avg:156.22ms step:970/1750 train_loss:3.4039 train_time:149978ms step_avg:156.23ms step:971/1750 train_loss:3.5682 train_time:150138ms step_avg:156.23ms step:972/1750 train_loss:3.5113 train_time:150298ms step_avg:156.23ms step:973/1750 train_loss:3.5714 train_time:150457ms step_avg:156.24ms step:974/1750 train_loss:3.6220 train_time:150620ms step_avg:156.24ms step:975/1750 train_loss:3.5020 train_time:150780ms step_avg:156.25ms step:976/1750 train_loss:3.7025 train_time:150938ms step_avg:156.25ms step:977/1750 train_loss:3.6042 train_time:151098ms step_avg:156.25ms step:978/1750 train_loss:3.4022 train_time:151258ms step_avg:156.26ms step:979/1750 train_loss:3.6612 train_time:151418ms step_avg:156.26ms step:980/1750 train_loss:3.4475 train_time:151577ms step_avg:156.27ms step:981/1750 train_loss:3.6102 train_time:151739ms step_avg:156.27ms step:982/1750 train_loss:3.5820 train_time:151898ms step_avg:156.27ms step:983/1750 train_loss:3.5547 train_time:152058ms step_avg:156.28ms step:984/1750 train_loss:3.5234 train_time:152217ms step_avg:156.28ms step:985/1750 train_loss:3.6226 train_time:152377ms step_avg:156.28ms step:986/1750 train_loss:3.4538 train_time:152537ms step_avg:156.29ms step:987/1750 train_loss:3.5244 train_time:152696ms step_avg:156.29ms step:988/1750 train_loss:3.5436 train_time:152857ms step_avg:156.30ms step:989/1750 train_loss:3.4543 train_time:153017ms step_avg:156.30ms step:990/1750 train_loss:3.6920 train_time:153179ms step_avg:156.31ms step:991/1750 train_loss:3.5067 train_time:153338ms step_avg:156.31ms step:992/1750 train_loss:3.4724 train_time:153503ms step_avg:156.32ms step:993/1750 train_loss:3.5418 train_time:153669ms step_avg:156.33ms step:994/1750 train_loss:3.6288 train_time:153827ms step_avg:156.33ms step:995/1750 train_loss:3.5691 train_time:153987ms step_avg:156.33ms step:996/1750 train_loss:3.4962 train_time:154145ms step_avg:156.33ms step:997/1750 train_loss:3.8111 train_time:154306ms step_avg:156.34ms step:998/1750 train_loss:3.4795 train_time:154465ms step_avg:156.34ms step:999/1750 train_loss:3.6296 train_time:154627ms step_avg:156.35ms step:1000/1750 train_loss:3.4861 train_time:154791ms step_avg:156.35ms step:1000/1750 val_loss:3.5074 train_time:154832ms step_avg:156.40ms step:1001/1750 train_loss:3.5342 train_time:154951ms step_avg:156.36ms step:1002/1750 train_loss:3.4192 train_time:155110ms step_avg:156.36ms step:1003/1750 train_loss:3.5959 train_time:155272ms step_avg:156.37ms step:1004/1750 train_loss:3.6414 train_time:155433ms step_avg:156.37ms step:1005/1750 train_loss:3.4317 train_time:155594ms step_avg:156.38ms step:1006/1750 train_loss:3.5052 train_time:155754ms step_avg:156.38ms step:1007/1750 train_loss:3.4773 train_time:155914ms step_avg:156.38ms step:1008/1750 train_loss:3.6029 train_time:156076ms step_avg:156.39ms step:1009/1750 train_loss:3.7050 train_time:156242ms step_avg:156.40ms step:1010/1750 train_loss:3.5982 train_time:156401ms step_avg:156.40ms step:1011/1750 train_loss:3.5757 train_time:156561ms step_avg:156.40ms step:1012/1750 train_loss:3.4335 train_time:156720ms step_avg:156.41ms step:1013/1750 train_loss:3.5755 train_time:156882ms step_avg:156.41ms step:1014/1750 train_loss:3.6596 train_time:157044ms step_avg:156.42ms step:1015/1750 train_loss:3.3671 train_time:157206ms step_avg:156.42ms step:1016/1750 train_loss:3.4520 train_time:157368ms step_avg:156.43ms step:1017/1750 train_loss:3.4568 train_time:157531ms step_avg:156.44ms step:1018/1750 train_loss:3.4352 train_time:157691ms step_avg:156.44ms step:1019/1750 train_loss:3.5630 train_time:157851ms step_avg:156.44ms step:1020/1750 train_loss:3.4390 train_time:158012ms step_avg:156.45ms step:1021/1750 train_loss:3.3958 train_time:158170ms step_avg:156.45ms step:1022/1750 train_loss:3.5199 train_time:158331ms step_avg:156.45ms step:1023/1750 train_loss:3.5491 train_time:158491ms step_avg:156.46ms step:1024/1750 train_loss:3.5189 train_time:158651ms step_avg:156.46ms step:1025/1750 train_loss:3.5291 train_time:158812ms step_avg:156.46ms step:1026/1750 train_loss:3.6736 train_time:158970ms step_avg:156.47ms step:1027/1750 train_loss:3.3633 train_time:159129ms step_avg:156.47ms step:1028/1750 train_loss:3.4394 train_time:159292ms step_avg:156.48ms step:1029/1750 train_loss:3.3644 train_time:159455ms step_avg:156.48ms step:1030/1750 train_loss:3.5788 train_time:159614ms step_avg:156.48ms step:1031/1750 train_loss:3.5614 train_time:159772ms step_avg:156.49ms step:1032/1750 train_loss:3.7468 train_time:159933ms step_avg:156.49ms step:1033/1750 train_loss:3.5399 train_time:160092ms step_avg:156.49ms step:1034/1750 train_loss:3.4724 train_time:160253ms step_avg:156.50ms step:1035/1750 train_loss:3.4875 train_time:160414ms step_avg:156.50ms step:1036/1750 train_loss:3.5318 train_time:160575ms step_avg:156.51ms step:1037/1750 train_loss:3.8459 train_time:160736ms step_avg:156.51ms step:1038/1750 train_loss:3.6717 train_time:160897ms step_avg:156.51ms step:1039/1750 train_loss:3.5560 train_time:161060ms step_avg:156.52ms step:1040/1750 train_loss:3.4606 train_time:161222ms step_avg:156.53ms step:1041/1750 train_loss:3.5309 train_time:161386ms step_avg:156.53ms step:1042/1750 train_loss:3.5741 train_time:161545ms step_avg:156.54ms step:1043/1750 train_loss:3.4910 train_time:161707ms step_avg:156.54ms step:1044/1750 train_loss:3.5056 train_time:161868ms step_avg:156.55ms step:1045/1750 train_loss:3.5651 train_time:162031ms step_avg:156.55ms step:1046/1750 train_loss:3.4747 train_time:162192ms step_avg:156.56ms step:1047/1750 train_loss:3.6874 train_time:162353ms step_avg:156.56ms step:1048/1750 train_loss:3.5517 train_time:162514ms step_avg:156.56ms step:1049/1750 train_loss:3.4576 train_time:162675ms step_avg:156.57ms step:1050/1750 train_loss:3.4401 train_time:162840ms step_avg:156.58ms step:1051/1750 train_loss:3.5468 train_time:163004ms step_avg:156.58ms step:1052/1750 train_loss:3.4104 train_time:163168ms step_avg:156.59ms step:1053/1750 train_loss:3.7406 train_time:163329ms step_avg:156.60ms step:1054/1750 train_loss:3.5938 train_time:163491ms step_avg:156.60ms step:1055/1750 train_loss:3.4348 train_time:163650ms step_avg:156.60ms step:1056/1750 train_loss:3.5518 train_time:163810ms step_avg:156.61ms step:1057/1750 train_loss:3.6309 train_time:163972ms step_avg:156.61ms step:1058/1750 train_loss:3.3621 train_time:164135ms step_avg:156.62ms step:1059/1750 train_loss:3.4211 train_time:164301ms step_avg:156.63ms step:1060/1750 train_loss:3.4938 train_time:164461ms step_avg:156.63ms step:1061/1750 train_loss:3.4734 train_time:164620ms step_avg:156.63ms step:1062/1750 train_loss:3.4342 train_time:164782ms step_avg:156.64ms step:1063/1750 train_loss:3.5209 train_time:164944ms step_avg:156.64ms step:1064/1750 train_loss:3.4399 train_time:165103ms step_avg:156.64ms step:1065/1750 train_loss:3.4180 train_time:165268ms step_avg:156.65ms step:1066/1750 train_loss:3.4592 train_time:165429ms step_avg:156.66ms step:1067/1750 train_loss:3.3268 train_time:165593ms step_avg:156.66ms step:1068/1750 train_loss:3.4872 train_time:165753ms step_avg:156.67ms step:1069/1750 train_loss:3.3559 train_time:165919ms step_avg:156.67ms step:1070/1750 train_loss:3.6218 train_time:166080ms step_avg:156.68ms step:1071/1750 train_loss:3.5644 train_time:166249ms step_avg:156.69ms step:1072/1750 train_loss:3.4997 train_time:166409ms step_avg:156.69ms step:1073/1750 train_loss:3.5792 train_time:166568ms step_avg:156.70ms step:1074/1750 train_loss:3.4962 train_time:166731ms step_avg:156.70ms step:1075/1750 train_loss:3.4519 train_time:166894ms step_avg:156.71ms step:1076/1750 train_loss:3.8487 train_time:167058ms step_avg:156.71ms step:1077/1750 train_loss:3.4994 train_time:167218ms step_avg:156.72ms step:1078/1750 train_loss:3.1409 train_time:167388ms step_avg:156.73ms step:1079/1750 train_loss:3.5863 train_time:167550ms step_avg:156.74ms step:1080/1750 train_loss:3.4887 train_time:167714ms step_avg:156.74ms step:1081/1750 train_loss:3.5705 train_time:167875ms step_avg:156.75ms step:1082/1750 train_loss:3.6526 train_time:168038ms step_avg:156.75ms step:1083/1750 train_loss:3.5611 train_time:168198ms step_avg:156.76ms step:1084/1750 train_loss:3.5319 train_time:168363ms step_avg:156.76ms step:1085/1750 train_loss:3.4850 train_time:168524ms step_avg:156.77ms step:1086/1750 train_loss:3.6940 train_time:168686ms step_avg:156.77ms step:1087/1750 train_loss:3.5751 train_time:168847ms step_avg:156.78ms step:1088/1750 train_loss:3.4254 train_time:169011ms step_avg:156.78ms step:1089/1750 train_loss:3.4361 train_time:169178ms step_avg:156.79ms step:1090/1750 train_loss:3.5447 train_time:169346ms step_avg:156.80ms step:1091/1750 train_loss:3.3494 train_time:169507ms step_avg:156.81ms step:1092/1750 train_loss:3.5570 train_time:169669ms step_avg:156.81ms step:1093/1750 train_loss:3.6718 train_time:169832ms step_avg:156.82ms step:1094/1750 train_loss:3.5049 train_time:169992ms step_avg:156.82ms step:1095/1750 train_loss:3.4799 train_time:170153ms step_avg:156.82ms step:1096/1750 train_loss:3.4907 train_time:170316ms step_avg:156.83ms step:1097/1750 train_loss:3.5513 train_time:170479ms step_avg:156.83ms step:1098/1750 train_loss:3.6258 train_time:170646ms step_avg:156.84ms step:1099/1750 train_loss:3.5871 train_time:170809ms step_avg:156.85ms step:1100/1750 train_loss:3.5004 train_time:170972ms step_avg:156.85ms step:1101/1750 train_loss:3.3461 train_time:171134ms step_avg:156.86ms step:1102/1750 train_loss:3.3793 train_time:171303ms step_avg:156.87ms step:1103/1750 train_loss:3.5117 train_time:171469ms step_avg:156.88ms step:1104/1750 train_loss:3.3800 train_time:171628ms step_avg:156.88ms step:1105/1750 train_loss:4.1255 train_time:171790ms step_avg:156.89ms step:1106/1750 train_loss:3.2956 train_time:171950ms step_avg:156.89ms step:1107/1750 train_loss:3.6312 train_time:172110ms step_avg:156.89ms step:1108/1750 train_loss:3.4063 train_time:172269ms step_avg:156.89ms step:1109/1750 train_loss:3.5640 train_time:172429ms step_avg:156.90ms step:1110/1750 train_loss:3.5003 train_time:172589ms step_avg:156.90ms step:1111/1750 train_loss:3.5485 train_time:172749ms step_avg:156.90ms step:1112/1750 train_loss:3.6241 train_time:172911ms step_avg:156.91ms step:1113/1750 train_loss:3.4980 train_time:173078ms step_avg:156.92ms step:1114/1750 train_loss:3.4272 train_time:173242ms step_avg:156.92ms step:1115/1750 train_loss:3.3127 train_time:173405ms step_avg:156.93ms step:1116/1750 train_loss:3.4918 train_time:173566ms step_avg:156.93ms step:1117/1750 train_loss:3.6621 train_time:173729ms step_avg:156.94ms step:1118/1750 train_loss:3.6846 train_time:173893ms step_avg:156.94ms step:1119/1750 train_loss:3.5458 train_time:174054ms step_avg:156.95ms step:1120/1750 train_loss:3.5576 train_time:174216ms step_avg:156.95ms step:1121/1750 train_loss:3.4510 train_time:174379ms step_avg:156.96ms step:1122/1750 train_loss:3.5224 train_time:174539ms step_avg:156.96ms step:1123/1750 train_loss:3.6494 train_time:174701ms step_avg:156.96ms step:1124/1750 train_loss:3.4189 train_time:174863ms step_avg:156.97ms step:1125/1750 train_loss:3.2800 train_time:175025ms step_avg:156.97ms step:1125/1750 val_loss:3.4790 train_time:175067ms step_avg:157.01ms step:1126/1750 train_loss:3.5469 train_time:175186ms step_avg:156.98ms step:1127/1750 train_loss:3.7454 train_time:175349ms step_avg:156.98ms step:1128/1750 train_loss:3.2959 train_time:175512ms step_avg:156.99ms step:1129/1750 train_loss:3.6287 train_time:175676ms step_avg:156.99ms step:1130/1750 train_loss:3.4416 train_time:175839ms step_avg:157.00ms step:1131/1750 train_loss:3.4661 train_time:176006ms step_avg:157.01ms step:1132/1750 train_loss:3.4343 train_time:176165ms step_avg:157.01ms step:1133/1750 train_loss:3.5660 train_time:176471ms step_avg:157.14ms step:1134/1750 train_loss:3.5209 train_time:176640ms step_avg:157.15ms step:1135/1750 train_loss:3.5878 train_time:176806ms step_avg:157.16ms step:1136/1750 train_loss:3.6237 train_time:176967ms step_avg:157.16ms step:1137/1750 train_loss:3.5263 train_time:177129ms step_avg:157.17ms step:1138/1750 train_loss:3.4184 train_time:177291ms step_avg:157.17ms step:1139/1750 train_loss:3.7208 train_time:177589ms step_avg:157.30ms step:1140/1750 train_loss:3.5337 train_time:177753ms step_avg:157.30ms step:1141/1750 train_loss:3.6613 train_time:177917ms step_avg:157.31ms step:1142/1750 train_loss:3.5242 train_time:178079ms step_avg:157.31ms step:1143/1750 train_loss:3.4314 train_time:178241ms step_avg:157.32ms step:1144/1750 train_loss:3.5142 train_time:178404ms step_avg:157.32ms step:1145/1750 train_loss:3.6612 train_time:178564ms step_avg:157.33ms step:1146/1750 train_loss:3.6203 train_time:178727ms step_avg:157.33ms step:1147/1750 train_loss:3.5633 train_time:178888ms step_avg:157.33ms step:1148/1750 train_loss:3.5724 train_time:179048ms step_avg:157.34ms step:1149/1750 train_loss:3.4034 train_time:179212ms step_avg:157.34ms step:1150/1750 train_loss:3.4374 train_time:179373ms step_avg:157.34ms step:1151/1750 train_loss:3.3917 train_time:179537ms step_avg:157.35ms step:1152/1750 train_loss:3.4756 train_time:179702ms step_avg:157.36ms step:1153/1750 train_loss:3.4987 train_time:179866ms step_avg:157.36ms step:1154/1750 train_loss:3.5938 train_time:180026ms step_avg:157.37ms step:1155/1750 train_loss:3.3960 train_time:180190ms step_avg:157.37ms step:1156/1750 train_loss:3.6041 train_time:180355ms step_avg:157.38ms step:1157/1750 train_loss:3.5651 train_time:180518ms step_avg:157.38ms step:1158/1750 train_loss:3.3303 train_time:180679ms step_avg:157.39ms step:1159/1750 train_loss:3.4124 train_time:180841ms step_avg:157.39ms step:1160/1750 train_loss:3.4029 train_time:181001ms step_avg:157.39ms step:1161/1750 train_loss:3.1641 train_time:181165ms step_avg:157.40ms step:1162/1750 train_loss:3.4875 train_time:181327ms step_avg:157.40ms step:1163/1750 train_loss:3.4552 train_time:181489ms step_avg:157.41ms step:1164/1750 train_loss:3.3553 train_time:181648ms step_avg:157.41ms step:1165/1750 train_loss:3.3203 train_time:181808ms step_avg:157.41ms step:1166/1750 train_loss:3.4469 train_time:181970ms step_avg:157.41ms step:1167/1750 train_loss:3.4692 train_time:182131ms step_avg:157.42ms step:1168/1750 train_loss:3.7955 train_time:182294ms step_avg:157.42ms step:1169/1750 train_loss:3.4507 train_time:182459ms step_avg:157.43ms step:1170/1750 train_loss:3.4576 train_time:182623ms step_avg:157.43ms step:1171/1750 train_loss:3.3805 train_time:182785ms step_avg:157.44ms step:1172/1750 train_loss:3.4938 train_time:182945ms step_avg:157.44ms step:1173/1750 train_loss:3.6089 train_time:183114ms step_avg:157.45ms step:1174/1750 train_loss:3.4582 train_time:183286ms step_avg:157.46ms step:1175/1750 train_loss:3.4468 train_time:183451ms step_avg:157.47ms step:1176/1750 train_loss:3.4964 train_time:183617ms step_avg:157.48ms step:1177/1750 train_loss:3.5201 train_time:183787ms step_avg:157.49ms step:1178/1750 train_loss:3.5664 train_time:183948ms step_avg:157.49ms step:1179/1750 train_loss:3.4719 train_time:184109ms step_avg:157.49ms step:1180/1750 train_loss:3.4263 train_time:184280ms step_avg:157.50ms step:1181/1750 train_loss:3.4082 train_time:184442ms step_avg:157.51ms step:1182/1750 train_loss:3.4663 train_time:184607ms step_avg:157.51ms step:1183/1750 train_loss:3.4008 train_time:184771ms step_avg:157.52ms step:1184/1750 train_loss:3.5764 train_time:184935ms step_avg:157.53ms step:1185/1750 train_loss:3.6159 train_time:185102ms step_avg:157.53ms step:1186/1750 train_loss:3.4268 train_time:185268ms step_avg:157.54ms step:1187/1750 train_loss:3.4816 train_time:185440ms step_avg:157.55ms step:1188/1750 train_loss:3.5088 train_time:185602ms step_avg:157.56ms step:1189/1750 train_loss:3.3458 train_time:185766ms step_avg:157.56ms step:1190/1750 train_loss:3.5158 train_time:185929ms step_avg:157.57ms step:1191/1750 train_loss:3.6477 train_time:186093ms step_avg:157.57ms step:1192/1750 train_loss:3.4587 train_time:186253ms step_avg:157.57ms step:1193/1750 train_loss:3.3461 train_time:186418ms step_avg:157.58ms step:1194/1750 train_loss:3.6287 train_time:186584ms step_avg:157.59ms step:1195/1750 train_loss:3.4422 train_time:186751ms step_avg:157.60ms step:1196/1750 train_loss:3.4538 train_time:186922ms step_avg:157.61ms step:1197/1750 train_loss:3.3585 train_time:187089ms step_avg:157.61ms step:1198/1750 train_loss:3.3698 train_time:187260ms step_avg:157.63ms step:1199/1750 train_loss:3.4085 train_time:187425ms step_avg:157.63ms step:1200/1750 train_loss:3.5091 train_time:187587ms step_avg:157.64ms step:1201/1750 train_loss:3.5522 train_time:187751ms step_avg:157.64ms step:1202/1750 train_loss:3.7203 train_time:187923ms step_avg:157.65ms step:1203/1750 train_loss:3.4786 train_time:188087ms step_avg:157.66ms step:1204/1750 train_loss:3.3816 train_time:188254ms step_avg:157.67ms step:1205/1750 train_loss:3.4981 train_time:188414ms step_avg:157.67ms step:1206/1750 train_loss:3.5452 train_time:188578ms step_avg:157.67ms step:1207/1750 train_loss:3.5889 train_time:188742ms step_avg:157.68ms step:1208/1750 train_loss:3.4681 train_time:188905ms step_avg:157.68ms step:1209/1750 train_loss:3.3028 train_time:189070ms step_avg:157.69ms step:1210/1750 train_loss:3.3776 train_time:189234ms step_avg:157.69ms step:1211/1750 train_loss:3.4695 train_time:189399ms step_avg:157.70ms step:1212/1750 train_loss:3.4655 train_time:189563ms step_avg:157.71ms step:1213/1750 train_loss:3.4834 train_time:189728ms step_avg:157.71ms step:1214/1750 train_loss:3.3367 train_time:189894ms step_avg:157.72ms step:1215/1750 train_loss:3.4602 train_time:190058ms step_avg:157.72ms step:1216/1750 train_loss:3.3944 train_time:190220ms step_avg:157.73ms step:1217/1750 train_loss:3.3943 train_time:190386ms step_avg:157.74ms step:1218/1750 train_loss:3.4881 train_time:190550ms step_avg:157.74ms step:1219/1750 train_loss:3.3341 train_time:190718ms step_avg:157.75ms step:1220/1750 train_loss:3.5395 train_time:190881ms step_avg:157.75ms step:1221/1750 train_loss:3.5796 train_time:191043ms step_avg:157.76ms step:1222/1750 train_loss:3.5146 train_time:191205ms step_avg:157.76ms step:1223/1750 train_loss:3.3652 train_time:191369ms step_avg:157.76ms step:1224/1750 train_loss:3.3236 train_time:191537ms step_avg:157.77ms step:1225/1750 train_loss:3.4391 train_time:191699ms step_avg:157.78ms step:1226/1750 train_loss:3.3980 train_time:191865ms step_avg:157.78ms step:1227/1750 train_loss:3.3383 train_time:192029ms step_avg:157.79ms step:1228/1750 train_loss:3.5180 train_time:192190ms step_avg:157.79ms step:1229/1750 train_loss:3.4364 train_time:192355ms step_avg:157.80ms step:1230/1750 train_loss:3.4664 train_time:192525ms step_avg:157.81ms step:1231/1750 train_loss:3.6495 train_time:192690ms step_avg:157.81ms step:1232/1750 train_loss:3.5620 train_time:192855ms step_avg:157.82ms step:1233/1750 train_loss:3.4943 train_time:193019ms step_avg:157.82ms step:1234/1750 train_loss:3.6550 train_time:193183ms step_avg:157.83ms step:1235/1750 train_loss:3.3922 train_time:193348ms step_avg:157.84ms step:1236/1750 train_loss:3.3581 train_time:193510ms step_avg:157.84ms step:1237/1750 train_loss:3.3386 train_time:193674ms step_avg:157.84ms step:1238/1750 train_loss:3.3583 train_time:193845ms step_avg:157.85ms step:1239/1750 train_loss:3.3990 train_time:194009ms step_avg:157.86ms step:1240/1750 train_loss:3.4501 train_time:194169ms step_avg:157.86ms step:1241/1750 train_loss:3.5003 train_time:194333ms step_avg:157.87ms step:1242/1750 train_loss:3.3708 train_time:194495ms step_avg:157.87ms step:1243/1750 train_loss:3.4738 train_time:194660ms step_avg:157.88ms step:1244/1750 train_loss:3.4781 train_time:194822ms step_avg:157.88ms step:1245/1750 train_loss:3.4884 train_time:194985ms step_avg:157.88ms step:1246/1750 train_loss:3.3077 train_time:195147ms step_avg:157.89ms step:1247/1750 train_loss:3.4485 train_time:195308ms step_avg:157.89ms step:1248/1750 train_loss:3.5027 train_time:195470ms step_avg:157.89ms step:1249/1750 train_loss:3.4878 train_time:195631ms step_avg:157.89ms step:1250/1750 train_loss:3.3709 train_time:195792ms step_avg:157.90ms step:1250/1750 val_loss:3.4248 train_time:195837ms step_avg:157.93ms step:1251/1750 train_loss:3.5656 train_time:195960ms step_avg:157.91ms step:1252/1750 train_loss:3.4416 train_time:196119ms step_avg:157.91ms step:1253/1750 train_loss:3.3744 train_time:196282ms step_avg:157.91ms step:1254/1750 train_loss:3.4815 train_time:196446ms step_avg:157.92ms step:1255/1750 train_loss:3.5927 train_time:196616ms step_avg:157.92ms step:1256/1750 train_loss:3.3724 train_time:196781ms step_avg:157.93ms step:1257/1750 train_loss:3.4360 train_time:196943ms step_avg:157.93ms step:1258/1750 train_loss:3.4189 train_time:197109ms step_avg:157.94ms step:1259/1750 train_loss:3.4060 train_time:197271ms step_avg:157.94ms step:1260/1750 train_loss:3.2706 train_time:197432ms step_avg:157.95ms step:1261/1750 train_loss:3.3680 train_time:197596ms step_avg:157.95ms step:1262/1750 train_loss:3.3961 train_time:197761ms step_avg:157.96ms step:1263/1750 train_loss:3.2999 train_time:197925ms step_avg:157.96ms step:1264/1750 train_loss:3.5129 train_time:198086ms step_avg:157.96ms step:1265/1750 train_loss:3.4986 train_time:198248ms step_avg:157.97ms step:1266/1750 train_loss:3.5110 train_time:198413ms step_avg:157.97ms step:1267/1750 train_loss:3.4351 train_time:198576ms step_avg:157.98ms step:1268/1750 train_loss:3.4772 train_time:198738ms step_avg:157.98ms step:1269/1750 train_loss:3.3243 train_time:198904ms step_avg:157.99ms step:1270/1750 train_loss:3.1672 train_time:199064ms step_avg:157.99ms step:1271/1750 train_loss:3.4692 train_time:199227ms step_avg:157.99ms step:1272/1750 train_loss:3.4236 train_time:199386ms step_avg:157.99ms step:1273/1750 train_loss:3.4535 train_time:199547ms step_avg:157.99ms step:1274/1750 train_loss:3.4176 train_time:199711ms step_avg:158.00ms step:1275/1750 train_loss:3.5092 train_time:199876ms step_avg:158.00ms step:1276/1750 train_loss:3.5397 train_time:200037ms step_avg:158.01ms step:1277/1750 train_loss:3.4785 train_time:200201ms step_avg:158.01ms step:1278/1750 train_loss:3.4711 train_time:200362ms step_avg:158.01ms step:1279/1750 train_loss:3.3252 train_time:200526ms step_avg:158.02ms step:1280/1750 train_loss:3.4376 train_time:200694ms step_avg:158.03ms step:1281/1750 train_loss:3.4940 train_time:200856ms step_avg:158.03ms step:1282/1750 train_loss:3.5373 train_time:201016ms step_avg:158.03ms step:1283/1750 train_loss:3.4058 train_time:201180ms step_avg:158.04ms step:1284/1750 train_loss:3.4416 train_time:201341ms step_avg:158.04ms step:1285/1750 train_loss:3.4265 train_time:201503ms step_avg:158.04ms step:1286/1750 train_loss:3.4014 train_time:201665ms step_avg:158.04ms step:1287/1750 train_loss:3.5572 train_time:201828ms step_avg:158.05ms step:1288/1750 train_loss:3.3680 train_time:201993ms step_avg:158.05ms step:1289/1750 train_loss:3.4538 train_time:202164ms step_avg:158.06ms step:1290/1750 train_loss:3.5294 train_time:202331ms step_avg:158.07ms step:1291/1750 train_loss:3.4486 train_time:202495ms step_avg:158.08ms step:1292/1750 train_loss:3.5430 train_time:202661ms step_avg:158.08ms step:1293/1750 train_loss:3.5834 train_time:202824ms step_avg:158.09ms step:1294/1750 train_loss:3.5301 train_time:202988ms step_avg:158.09ms step:1295/1750 train_loss:3.3550 train_time:203149ms step_avg:158.09ms step:1296/1750 train_loss:3.4459 train_time:203314ms step_avg:158.10ms step:1297/1750 train_loss:3.3410 train_time:203477ms step_avg:158.10ms step:1298/1750 train_loss:3.3466 train_time:203641ms step_avg:158.11ms step:1299/1750 train_loss:3.4604 train_time:203805ms step_avg:158.11ms step:1300/1750 train_loss:3.4729 train_time:203966ms step_avg:158.11ms step:1301/1750 train_loss:3.4723 train_time:204130ms step_avg:158.12ms step:1302/1750 train_loss:3.6418 train_time:204298ms step_avg:158.13ms step:1303/1750 train_loss:3.3672 train_time:204468ms step_avg:158.13ms step:1304/1750 train_loss:3.5830 train_time:204633ms step_avg:158.14ms step:1305/1750 train_loss:3.3345 train_time:204794ms step_avg:158.14ms step:1306/1750 train_loss:3.5130 train_time:204962ms step_avg:158.15ms step:1307/1750 train_loss:3.5260 train_time:205123ms step_avg:158.15ms step:1308/1750 train_loss:3.3636 train_time:205289ms step_avg:158.16ms step:1309/1750 train_loss:3.3750 train_time:205457ms step_avg:158.17ms step:1310/1750 train_loss:3.3607 train_time:205620ms step_avg:158.17ms step:1311/1750 train_loss:3.3635 train_time:205781ms step_avg:158.17ms step:1312/1750 train_loss:3.4510 train_time:205946ms step_avg:158.18ms step:1313/1750 train_loss:3.4107 train_time:206110ms step_avg:158.18ms step:1314/1750 train_loss:3.1069 train_time:206278ms step_avg:158.19ms step:1315/1750 train_loss:3.3435 train_time:206440ms step_avg:158.19ms step:1316/1750 train_loss:3.4630 train_time:206601ms step_avg:158.19ms step:1317/1750 train_loss:3.4940 train_time:206765ms step_avg:158.20ms step:1318/1750 train_loss:3.3670 train_time:206937ms step_avg:158.21ms step:1319/1750 train_loss:3.4936 train_time:207101ms step_avg:158.21ms step:1320/1750 train_loss:3.5224 train_time:207268ms step_avg:158.22ms step:1321/1750 train_loss:3.4309 train_time:207434ms step_avg:158.23ms step:1322/1750 train_loss:3.3869 train_time:207744ms step_avg:158.34ms step:1323/1750 train_loss:3.3944 train_time:207916ms step_avg:158.35ms step:1324/1750 train_loss:3.5049 train_time:208082ms step_avg:158.36ms step:1325/1750 train_loss:3.5576 train_time:208251ms step_avg:158.37ms step:1326/1750 train_loss:3.2889 train_time:208420ms step_avg:158.37ms step:1327/1750 train_loss:3.2329 train_time:208583ms step_avg:158.38ms step:1328/1750 train_loss:3.5581 train_time:208748ms step_avg:158.38ms step:1329/1750 train_loss:3.3626 train_time:209073ms step_avg:158.51ms step:1330/1750 train_loss:3.4910 train_time:209240ms step_avg:158.51ms step:1331/1750 train_loss:3.4004 train_time:209400ms step_avg:158.52ms step:1332/1750 train_loss:3.8068 train_time:209565ms step_avg:158.52ms step:1333/1750 train_loss:3.5423 train_time:209731ms step_avg:158.53ms step:1334/1750 train_loss:3.4383 train_time:209895ms step_avg:158.53ms step:1335/1750 train_loss:3.3696 train_time:210060ms step_avg:158.54ms step:1336/1750 train_loss:3.3570 train_time:210230ms step_avg:158.54ms step:1337/1750 train_loss:3.6199 train_time:210398ms step_avg:158.55ms step:1338/1750 train_loss:3.5862 train_time:210562ms step_avg:158.56ms step:1339/1750 train_loss:3.4034 train_time:210727ms step_avg:158.56ms step:1340/1750 train_loss:3.3506 train_time:210890ms step_avg:158.56ms step:1341/1750 train_loss:3.6612 train_time:211052ms step_avg:158.57ms step:1342/1750 train_loss:3.4245 train_time:211218ms step_avg:158.57ms step:1343/1750 train_loss:3.4319 train_time:211380ms step_avg:158.57ms step:1344/1750 train_loss:3.4818 train_time:211544ms step_avg:158.58ms step:1345/1750 train_loss:3.4559 train_time:211711ms step_avg:158.59ms step:1346/1750 train_loss:3.3660 train_time:211876ms step_avg:158.59ms step:1347/1750 train_loss:3.3324 train_time:212039ms step_avg:158.59ms step:1348/1750 train_loss:3.4090 train_time:212201ms step_avg:158.60ms step:1349/1750 train_loss:3.3434 train_time:212362ms step_avg:158.60ms step:1350/1750 train_loss:3.4553 train_time:212527ms step_avg:158.60ms step:1351/1750 train_loss:3.3114 train_time:212690ms step_avg:158.61ms step:1352/1750 train_loss:3.3663 train_time:212854ms step_avg:158.61ms step:1353/1750 train_loss:3.4783 train_time:213021ms step_avg:158.62ms step:1354/1750 train_loss:3.3210 train_time:213184ms step_avg:158.62ms step:1355/1750 train_loss:3.2575 train_time:213346ms step_avg:158.62ms step:1356/1750 train_loss:3.5800 train_time:213512ms step_avg:158.63ms step:1357/1750 train_loss:3.4921 train_time:213678ms step_avg:158.63ms step:1358/1750 train_loss:3.2480 train_time:213841ms step_avg:158.64ms step:1359/1750 train_loss:3.5124 train_time:214007ms step_avg:158.64ms step:1360/1750 train_loss:3.4201 train_time:214174ms step_avg:158.65ms step:1361/1750 train_loss:3.2044 train_time:214343ms step_avg:158.66ms step:1362/1750 train_loss:3.4613 train_time:214507ms step_avg:158.66ms step:1363/1750 train_loss:3.3386 train_time:214679ms step_avg:158.67ms step:1364/1750 train_loss:3.3762 train_time:214840ms step_avg:158.67ms step:1365/1750 train_loss:3.3839 train_time:215001ms step_avg:158.67ms step:1366/1750 train_loss:3.4907 train_time:215165ms step_avg:158.68ms step:1367/1750 train_loss:3.4588 train_time:215329ms step_avg:158.68ms step:1368/1750 train_loss:3.4189 train_time:215495ms step_avg:158.69ms step:1369/1750 train_loss:3.3331 train_time:215666ms step_avg:158.69ms step:1370/1750 train_loss:3.6737 train_time:215830ms step_avg:158.70ms step:1371/1750 train_loss:3.3826 train_time:215993ms step_avg:158.70ms step:1372/1750 train_loss:3.4317 train_time:216160ms step_avg:158.71ms step:1373/1750 train_loss:3.4322 train_time:216322ms step_avg:158.71ms step:1374/1750 train_loss:3.2229 train_time:216486ms step_avg:158.71ms step:1375/1750 train_loss:3.6060 train_time:216650ms step_avg:158.72ms step:1375/1750 val_loss:3.3778 train_time:216692ms step_avg:158.75ms step:1376/1750 train_loss:3.4067 train_time:216813ms step_avg:158.72ms step:1377/1750 train_loss:3.5438 train_time:216978ms step_avg:158.73ms step:1378/1750 train_loss:3.5522 train_time:217139ms step_avg:158.73ms step:1379/1750 train_loss:3.1861 train_time:217305ms step_avg:158.73ms step:1380/1750 train_loss:3.3738 train_time:217467ms step_avg:158.74ms step:1381/1750 train_loss:3.7740 train_time:217636ms step_avg:158.74ms step:1382/1750 train_loss:3.2836 train_time:217799ms step_avg:158.75ms step:1383/1750 train_loss:3.4573 train_time:217962ms step_avg:158.75ms step:1384/1750 train_loss:3.5444 train_time:218129ms step_avg:158.75ms step:1385/1750 train_loss:3.4713 train_time:218288ms step_avg:158.76ms step:1386/1750 train_loss:3.4152 train_time:218452ms step_avg:158.76ms step:1387/1750 train_loss:3.2610 train_time:218617ms step_avg:158.76ms step:1388/1750 train_loss:3.4127 train_time:218778ms step_avg:158.76ms step:1389/1750 train_loss:3.3840 train_time:218942ms step_avg:158.77ms step:1390/1750 train_loss:3.6359 train_time:219102ms step_avg:158.77ms step:1391/1750 train_loss:3.3552 train_time:219266ms step_avg:158.77ms step:1392/1750 train_loss:3.3525 train_time:219431ms step_avg:158.78ms step:1393/1750 train_loss:3.3119 train_time:219596ms step_avg:158.78ms step:1394/1750 train_loss:3.5749 train_time:219758ms step_avg:158.78ms step:1395/1750 train_loss:3.4642 train_time:219918ms step_avg:158.79ms step:1396/1750 train_loss:3.4775 train_time:220079ms step_avg:158.79ms step:1397/1750 train_loss:3.3704 train_time:220239ms step_avg:158.79ms step:1398/1750 train_loss:3.3204 train_time:220400ms step_avg:158.79ms step:1399/1750 train_loss:3.3907 train_time:220562ms step_avg:158.79ms step:1400/1750 train_loss:3.3813 train_time:220728ms step_avg:158.80ms step:1401/1750 train_loss:3.4115 train_time:220891ms step_avg:158.80ms step:1402/1750 train_loss:3.3561 train_time:221055ms step_avg:158.80ms step:1403/1750 train_loss:3.5641 train_time:221221ms step_avg:158.81ms step:1404/1750 train_loss:3.3464 train_time:221382ms step_avg:158.81ms step:1405/1750 train_loss:3.3780 train_time:221547ms step_avg:158.82ms step:1406/1750 train_loss:3.3745 train_time:221714ms step_avg:158.82ms step:1407/1750 train_loss:3.2386 train_time:221875ms step_avg:158.82ms step:1408/1750 train_loss:3.3710 train_time:222037ms step_avg:158.82ms step:1409/1750 train_loss:3.3638 train_time:222205ms step_avg:158.83ms step:1410/1750 train_loss:3.3474 train_time:222367ms step_avg:158.83ms step:1411/1750 train_loss:3.4288 train_time:222529ms step_avg:158.84ms step:1412/1750 train_loss:3.3921 train_time:222694ms step_avg:158.84ms step:1413/1750 train_loss:3.4220 train_time:222856ms step_avg:158.84ms step:1414/1750 train_loss:3.3967 train_time:223019ms step_avg:158.85ms step:1415/1750 train_loss:3.4750 train_time:223185ms step_avg:158.85ms step:1416/1750 train_loss:3.2902 train_time:223355ms step_avg:158.86ms step:1417/1750 train_loss:3.3440 train_time:223519ms step_avg:158.86ms step:1418/1750 train_loss:3.4522 train_time:223681ms step_avg:158.86ms step:1419/1750 train_loss:3.4100 train_time:223847ms step_avg:158.87ms step:1420/1750 train_loss:3.4244 train_time:224014ms step_avg:158.88ms step:1421/1750 train_loss:3.4342 train_time:224178ms step_avg:158.88ms step:1422/1750 train_loss:3.4016 train_time:224341ms step_avg:158.88ms step:1423/1750 train_loss:3.3844 train_time:224502ms step_avg:158.88ms step:1424/1750 train_loss:3.3930 train_time:224667ms step_avg:158.89ms step:1425/1750 train_loss:3.2474 train_time:224837ms step_avg:158.90ms step:1426/1750 train_loss:3.3879 train_time:224998ms step_avg:158.90ms step:1427/1750 train_loss:3.3411 train_time:225164ms step_avg:158.90ms step:1428/1750 train_loss:3.4388 train_time:225328ms step_avg:158.91ms step:1429/1750 train_loss:3.4194 train_time:225491ms step_avg:158.91ms step:1430/1750 train_loss:3.3217 train_time:225657ms step_avg:158.91ms step:1431/1750 train_loss:3.3766 train_time:225823ms step_avg:158.92ms step:1432/1750 train_loss:3.4004 train_time:225989ms step_avg:158.92ms step:1433/1750 train_loss:3.2021 train_time:226159ms step_avg:158.93ms step:1434/1750 train_loss:3.3468 train_time:226326ms step_avg:158.94ms step:1435/1750 train_loss:3.1849 train_time:226490ms step_avg:158.94ms step:1436/1750 train_loss:3.2852 train_time:226656ms step_avg:158.95ms step:1437/1750 train_loss:3.4737 train_time:226820ms step_avg:158.95ms step:1438/1750 train_loss:3.4400 train_time:226981ms step_avg:158.95ms step:1439/1750 train_loss:3.3768 train_time:227146ms step_avg:158.95ms step:1440/1750 train_loss:3.2467 train_time:227310ms step_avg:158.96ms step:1441/1750 train_loss:3.4018 train_time:227475ms step_avg:158.96ms step:1442/1750 train_loss:3.4504 train_time:227642ms step_avg:158.97ms step:1443/1750 train_loss:3.5369 train_time:227817ms step_avg:158.98ms step:1444/1750 train_loss:3.5058 train_time:227979ms step_avg:158.98ms step:1445/1750 train_loss:3.3938 train_time:228144ms step_avg:158.99ms step:1446/1750 train_loss:3.2661 train_time:228311ms step_avg:158.99ms step:1447/1750 train_loss:3.3511 train_time:228478ms step_avg:159.00ms step:1448/1750 train_loss:3.3547 train_time:228642ms step_avg:159.00ms step:1449/1750 train_loss:3.4606 train_time:228807ms step_avg:159.00ms step:1450/1750 train_loss:3.4566 train_time:228971ms step_avg:159.01ms step:1451/1750 train_loss:3.2732 train_time:229135ms step_avg:159.01ms step:1452/1750 train_loss:3.3914 train_time:229300ms step_avg:159.02ms step:1453/1750 train_loss:3.3155 train_time:229461ms step_avg:159.02ms step:1454/1750 train_loss:3.3444 train_time:229626ms step_avg:159.02ms step:1455/1750 train_loss:3.3906 train_time:229798ms step_avg:159.03ms step:1456/1750 train_loss:3.3360 train_time:229961ms step_avg:159.03ms step:1457/1750 train_loss:3.2153 train_time:230126ms step_avg:159.04ms step:1458/1750 train_loss:3.4790 train_time:230291ms step_avg:159.04ms step:1459/1750 train_loss:3.3293 train_time:230457ms step_avg:159.05ms step:1460/1750 train_loss:3.3758 train_time:230623ms step_avg:159.05ms step:1461/1750 train_loss:3.4929 train_time:230791ms step_avg:159.06ms step:1462/1750 train_loss:3.3177 train_time:230955ms step_avg:159.06ms step:1463/1750 train_loss:3.5241 train_time:231123ms step_avg:159.07ms step:1464/1750 train_loss:3.4206 train_time:231289ms step_avg:159.07ms step:1465/1750 train_loss:3.4143 train_time:231454ms step_avg:159.07ms step:1466/1750 train_loss:3.3441 train_time:231617ms step_avg:159.08ms step:1467/1750 train_loss:3.4529 train_time:231782ms step_avg:159.08ms step:1468/1750 train_loss:3.3433 train_time:231945ms step_avg:159.08ms step:1469/1750 train_loss:3.3240 train_time:232112ms step_avg:159.09ms step:1470/1750 train_loss:3.3890 train_time:232281ms step_avg:159.10ms step:1471/1750 train_loss:3.3119 train_time:232453ms step_avg:159.11ms step:1472/1750 train_loss:3.3029 train_time:232622ms step_avg:159.11ms step:1473/1750 train_loss:3.4933 train_time:232784ms step_avg:159.11ms step:1474/1750 train_loss:3.3730 train_time:232952ms step_avg:159.12ms step:1475/1750 train_loss:3.2046 train_time:233121ms step_avg:159.13ms step:1476/1750 train_loss:3.3182 train_time:233284ms step_avg:159.13ms step:1477/1750 train_loss:3.2949 train_time:233458ms step_avg:159.14ms step:1478/1750 train_loss:3.3648 train_time:233627ms step_avg:159.15ms step:1479/1750 train_loss:3.4554 train_time:233794ms step_avg:159.15ms step:1480/1750 train_loss:3.3336 train_time:233958ms step_avg:159.15ms step:1481/1750 train_loss:3.5087 train_time:234124ms step_avg:159.16ms step:1482/1750 train_loss:3.4249 train_time:234299ms step_avg:159.17ms step:1483/1750 train_loss:3.3294 train_time:234472ms step_avg:159.18ms step:1484/1750 train_loss:3.3177 train_time:234641ms step_avg:159.19ms step:1485/1750 train_loss:3.3333 train_time:234806ms step_avg:159.19ms step:1486/1750 train_loss:3.2746 train_time:234974ms step_avg:159.20ms step:1487/1750 train_loss:3.3954 train_time:235140ms step_avg:159.20ms step:1488/1750 train_loss:3.2903 train_time:235308ms step_avg:159.21ms step:1489/1750 train_loss:3.3747 train_time:235472ms step_avg:159.21ms step:1490/1750 train_loss:3.3098 train_time:235636ms step_avg:159.21ms step:1491/1750 train_loss:3.2172 train_time:235801ms step_avg:159.22ms step:1492/1750 train_loss:3.3139 train_time:235964ms step_avg:159.22ms step:1493/1750 train_loss:3.4889 train_time:236126ms step_avg:159.22ms step:1494/1750 train_loss:3.3545 train_time:236291ms step_avg:159.23ms step:1495/1750 train_loss:3.0837 train_time:236458ms step_avg:159.23ms step:1496/1750 train_loss:3.4134 train_time:236622ms step_avg:159.23ms step:1497/1750 train_loss:3.3658 train_time:236790ms step_avg:159.24ms step:1498/1750 train_loss:3.3898 train_time:236958ms step_avg:159.25ms step:1499/1750 train_loss:3.3649 train_time:237128ms step_avg:159.25ms step:1500/1750 train_loss:3.3484 train_time:237302ms step_avg:159.26ms step:1500/1750 val_loss:3.3332 train_time:237347ms step_avg:159.29ms step:1501/1750 train_loss:3.1398 train_time:237475ms step_avg:159.27ms step:1502/1750 train_loss:3.4177 train_time:237651ms step_avg:159.28ms step:1503/1750 train_loss:3.2963 train_time:237813ms step_avg:159.29ms step:1504/1750 train_loss:3.3040 train_time:237979ms step_avg:159.29ms step:1505/1750 train_loss:3.2679 train_time:238144ms step_avg:159.29ms step:1506/1750 train_loss:3.3306 train_time:238310ms step_avg:159.30ms step:1507/1750 train_loss:3.2331 train_time:238485ms step_avg:159.31ms step:1508/1750 train_loss:3.5391 train_time:238651ms step_avg:159.31ms step:1509/1750 train_loss:3.3260 train_time:238813ms step_avg:159.31ms step:1510/1750 train_loss:3.3241 train_time:238977ms step_avg:159.32ms step:1511/1750 train_loss:3.4654 train_time:239286ms step_avg:159.42ms step:1512/1750 train_loss:3.4693 train_time:239455ms step_avg:159.42ms step:1513/1750 train_loss:3.3191 train_time:239623ms step_avg:159.43ms step:1514/1750 train_loss:3.1409 train_time:239789ms step_avg:159.43ms step:1515/1750 train_loss:3.2883 train_time:239953ms step_avg:159.44ms step:1516/1750 train_loss:3.3000 train_time:240122ms step_avg:159.44ms step:1517/1750 train_loss:3.3519 train_time:240286ms step_avg:159.45ms step:1518/1750 train_loss:3.2594 train_time:240452ms step_avg:159.45ms step:1519/1750 train_loss:3.5570 train_time:240777ms step_avg:159.56ms step:1520/1750 train_loss:3.1797 train_time:240957ms step_avg:159.57ms step:1521/1750 train_loss:3.2600 train_time:241117ms step_avg:159.57ms step:1522/1750 train_loss:3.4028 train_time:241286ms step_avg:159.58ms step:1523/1750 train_loss:3.2715 train_time:241447ms step_avg:159.58ms step:1524/1750 train_loss:3.3962 train_time:241611ms step_avg:159.58ms step:1525/1750 train_loss:3.3844 train_time:241782ms step_avg:159.59ms step:1526/1750 train_loss:3.3234 train_time:241952ms step_avg:159.60ms step:1527/1750 train_loss:3.3327 train_time:242116ms step_avg:159.60ms step:1528/1750 train_loss:3.4568 train_time:242283ms step_avg:159.61ms step:1529/1750 train_loss:3.4555 train_time:242445ms step_avg:159.61ms step:1530/1750 train_loss:3.2835 train_time:242608ms step_avg:159.61ms step:1531/1750 train_loss:3.2416 train_time:242773ms step_avg:159.61ms step:1532/1750 train_loss:3.3899 train_time:242939ms step_avg:159.62ms step:1533/1750 train_loss:3.3249 train_time:243109ms step_avg:159.63ms step:1534/1750 train_loss:3.3275 train_time:243278ms step_avg:159.63ms step:1535/1750 train_loss:3.3267 train_time:243446ms step_avg:159.64ms step:1536/1750 train_loss:3.2745 train_time:243611ms step_avg:159.64ms step:1537/1750 train_loss:3.3195 train_time:243774ms step_avg:159.64ms step:1538/1750 train_loss:3.4704 train_time:243945ms step_avg:159.65ms step:1539/1750 train_loss:3.4441 train_time:244113ms step_avg:159.66ms step:1540/1750 train_loss:3.3207 train_time:244277ms step_avg:159.66ms step:1541/1750 train_loss:3.2778 train_time:244441ms step_avg:159.66ms step:1542/1750 train_loss:3.2948 train_time:244608ms step_avg:159.67ms step:1543/1750 train_loss:3.1978 train_time:244774ms step_avg:159.67ms step:1544/1750 train_loss:3.3424 train_time:244935ms step_avg:159.67ms step:1545/1750 train_loss:3.3123 train_time:245101ms step_avg:159.68ms step:1546/1750 train_loss:3.3054 train_time:245272ms step_avg:159.68ms step:1547/1750 train_loss:3.2631 train_time:245440ms step_avg:159.69ms step:1548/1750 train_loss:3.3091 train_time:245610ms step_avg:159.69ms step:1549/1750 train_loss:3.3822 train_time:245775ms step_avg:159.70ms step:1550/1750 train_loss:3.3357 train_time:245938ms step_avg:159.70ms step:1551/1750 train_loss:3.2480 train_time:246104ms step_avg:159.70ms step:1552/1750 train_loss:3.2657 train_time:246270ms step_avg:159.71ms step:1553/1750 train_loss:3.2728 train_time:246433ms step_avg:159.71ms step:1554/1750 train_loss:3.4001 train_time:246596ms step_avg:159.71ms step:1555/1750 train_loss:3.3830 train_time:246760ms step_avg:159.72ms step:1556/1750 train_loss:3.3228 train_time:246924ms step_avg:159.72ms step:1557/1750 train_loss:3.3621 train_time:247086ms step_avg:159.72ms step:1558/1750 train_loss:3.3021 train_time:247252ms step_avg:159.72ms step:1559/1750 train_loss:3.1738 train_time:247425ms step_avg:159.73ms step:1560/1750 train_loss:3.4765 train_time:247588ms step_avg:159.73ms step:1561/1750 train_loss:3.2744 train_time:247753ms step_avg:159.74ms step:1562/1750 train_loss:3.2558 train_time:247917ms step_avg:159.74ms step:1563/1750 train_loss:3.3603 train_time:248083ms step_avg:159.74ms step:1564/1750 train_loss:3.2004 train_time:248254ms step_avg:159.75ms step:1565/1750 train_loss:3.2164 train_time:248422ms step_avg:159.76ms step:1566/1750 train_loss:3.4090 train_time:248589ms step_avg:159.76ms step:1567/1750 train_loss:3.2806 train_time:248753ms step_avg:159.76ms step:1568/1750 train_loss:3.2816 train_time:248921ms step_avg:159.77ms step:1569/1750 train_loss:3.3660 train_time:249097ms step_avg:159.78ms step:1570/1750 train_loss:3.3274 train_time:249269ms step_avg:159.79ms step:1571/1750 train_loss:3.2036 train_time:249436ms step_avg:159.79ms step:1572/1750 train_loss:3.2463 train_time:249601ms step_avg:159.80ms step:1573/1750 train_loss:3.3564 train_time:249770ms step_avg:159.80ms step:1574/1750 train_loss:3.2156 train_time:249933ms step_avg:159.80ms step:1575/1750 train_loss:3.3711 train_time:250096ms step_avg:159.81ms step:1576/1750 train_loss:3.2757 train_time:250263ms step_avg:159.81ms step:1577/1750 train_loss:3.3275 train_time:250432ms step_avg:159.82ms step:1578/1750 train_loss:3.3125 train_time:250597ms step_avg:159.82ms step:1579/1750 train_loss:3.2875 train_time:250767ms step_avg:159.83ms step:1580/1750 train_loss:3.2532 train_time:250933ms step_avg:159.83ms step:1581/1750 train_loss:3.4470 train_time:251103ms step_avg:159.84ms step:1582/1750 train_loss:3.2694 train_time:251277ms step_avg:159.85ms step:1583/1750 train_loss:3.4221 train_time:251449ms step_avg:159.85ms step:1584/1750 train_loss:3.2419 train_time:251613ms step_avg:159.86ms step:1585/1750 train_loss:3.4118 train_time:251785ms step_avg:159.86ms step:1586/1750 train_loss:3.1965 train_time:251952ms step_avg:159.87ms step:1587/1750 train_loss:3.3970 train_time:252115ms step_avg:159.87ms step:1588/1750 train_loss:3.2731 train_time:252284ms step_avg:159.88ms step:1589/1750 train_loss:3.4362 train_time:252449ms step_avg:159.88ms step:1590/1750 train_loss:3.2837 train_time:252614ms step_avg:159.88ms step:1591/1750 train_loss:3.2942 train_time:252780ms step_avg:159.89ms step:1592/1750 train_loss:3.3606 train_time:252948ms step_avg:159.89ms step:1593/1750 train_loss:3.3318 train_time:253118ms step_avg:159.90ms step:1594/1750 train_loss:3.3068 train_time:253284ms step_avg:159.90ms step:1595/1750 train_loss:3.4490 train_time:253452ms step_avg:159.91ms step:1596/1750 train_loss:3.1568 train_time:253626ms step_avg:159.92ms step:1597/1750 train_loss:3.3311 train_time:253795ms step_avg:159.92ms step:1598/1750 train_loss:3.3809 train_time:253964ms step_avg:159.93ms step:1599/1750 train_loss:3.4452 train_time:254136ms step_avg:159.93ms step:1600/1750 train_loss:3.2712 train_time:254304ms step_avg:159.94ms step:1601/1750 train_loss:3.5777 train_time:254468ms step_avg:159.94ms step:1602/1750 train_loss:3.4544 train_time:254636ms step_avg:159.95ms step:1603/1750 train_loss:3.2215 train_time:254810ms step_avg:159.96ms step:1604/1750 train_loss:3.2655 train_time:254977ms step_avg:159.96ms step:1605/1750 train_loss:3.1594 train_time:255151ms step_avg:159.97ms step:1606/1750 train_loss:3.4701 train_time:255326ms step_avg:159.98ms step:1607/1750 train_loss:3.3012 train_time:255491ms step_avg:159.98ms step:1608/1750 train_loss:3.3043 train_time:255660ms step_avg:159.99ms step:1609/1750 train_loss:3.2418 train_time:255832ms step_avg:159.99ms step:1610/1750 train_loss:3.7491 train_time:256010ms step_avg:160.01ms step:1611/1750 train_loss:3.5051 train_time:256180ms step_avg:160.01ms step:1612/1750 train_loss:3.3896 train_time:256353ms step_avg:160.02ms step:1613/1750 train_loss:3.2619 train_time:256529ms step_avg:160.03ms step:1614/1750 train_loss:3.3008 train_time:256695ms step_avg:160.03ms step:1615/1750 train_loss:3.3113 train_time:256864ms step_avg:160.04ms step:1616/1750 train_loss:3.2836 train_time:257046ms step_avg:160.05ms step:1617/1750 train_loss:3.3567 train_time:257222ms step_avg:160.06ms step:1618/1750 train_loss:3.2817 train_time:257387ms step_avg:160.07ms step:1619/1750 train_loss:3.1837 train_time:257555ms step_avg:160.07ms step:1620/1750 train_loss:3.4559 train_time:257718ms step_avg:160.07ms step:1621/1750 train_loss:3.3799 train_time:257889ms step_avg:160.08ms step:1622/1750 train_loss:3.1642 train_time:258055ms step_avg:160.08ms step:1623/1750 train_loss:3.2585 train_time:258224ms step_avg:160.09ms step:1624/1750 train_loss:3.2153 train_time:258388ms step_avg:160.09ms step:1625/1750 train_loss:3.3201 train_time:258553ms step_avg:160.09ms step:1625/1750 val_loss:3.2972 train_time:258595ms step_avg:160.12ms step:1626/1750 train_loss:3.2380 train_time:258718ms step_avg:160.10ms step:1627/1750 train_loss:3.2373 train_time:258881ms step_avg:160.10ms step:1628/1750 train_loss:3.3636 train_time:259044ms step_avg:160.10ms step:1629/1750 train_loss:3.2467 train_time:259210ms step_avg:160.10ms step:1630/1750 train_loss:3.3205 train_time:259381ms step_avg:160.11ms step:1631/1750 train_loss:3.1741 train_time:259559ms step_avg:160.12ms step:1632/1750 train_loss:3.1499 train_time:259722ms step_avg:160.12ms step:1633/1750 train_loss:3.2982 train_time:259891ms step_avg:160.13ms step:1634/1750 train_loss:3.3084 train_time:260057ms step_avg:160.13ms step:1635/1750 train_loss:3.2478 train_time:260229ms step_avg:160.14ms step:1636/1750 train_loss:3.3312 train_time:260395ms step_avg:160.14ms step:1637/1750 train_loss:3.3783 train_time:260562ms step_avg:160.15ms step:1638/1750 train_loss:3.4029 train_time:260733ms step_avg:160.16ms step:1639/1750 train_loss:3.5728 train_time:260906ms step_avg:160.16ms step:1640/1750 train_loss:3.3512 train_time:261073ms step_avg:160.17ms step:1641/1750 train_loss:3.2981 train_time:261242ms step_avg:160.17ms step:1642/1750 train_loss:3.4080 train_time:261407ms step_avg:160.18ms step:1643/1750 train_loss:3.2730 train_time:261581ms step_avg:160.18ms step:1644/1750 train_loss:3.3133 train_time:261746ms step_avg:160.19ms step:1645/1750 train_loss:3.3169 train_time:261908ms step_avg:160.19ms step:1646/1750 train_loss:3.0716 train_time:262075ms step_avg:160.19ms step:1647/1750 train_loss:3.3248 train_time:262241ms step_avg:160.20ms step:1648/1750 train_loss:3.2174 train_time:262406ms step_avg:160.20ms step:1649/1750 train_loss:3.2849 train_time:262569ms step_avg:160.20ms step:1650/1750 train_loss:3.2696 train_time:262736ms step_avg:160.20ms step:1651/1750 train_loss:3.3439 train_time:262901ms step_avg:160.21ms step:1652/1750 train_loss:3.2592 train_time:263068ms step_avg:160.21ms step:1653/1750 train_loss:3.3926 train_time:263239ms step_avg:160.22ms step:1654/1750 train_loss:3.3838 train_time:263402ms step_avg:160.22ms step:1655/1750 train_loss:3.1765 train_time:263576ms step_avg:160.23ms step:1656/1750 train_loss:3.3322 train_time:263749ms step_avg:160.24ms step:1657/1750 train_loss:3.2487 train_time:263917ms step_avg:160.24ms step:1658/1750 train_loss:3.2219 train_time:264080ms step_avg:160.24ms step:1659/1750 train_loss:3.3026 train_time:264246ms step_avg:160.25ms step:1660/1750 train_loss:3.3446 train_time:264414ms step_avg:160.25ms step:1661/1750 train_loss:3.2519 train_time:264582ms step_avg:160.26ms step:1662/1750 train_loss:3.3548 train_time:264746ms step_avg:160.26ms step:1663/1750 train_loss:3.3455 train_time:264915ms step_avg:160.26ms step:1664/1750 train_loss:3.4062 train_time:265092ms step_avg:160.27ms step:1665/1750 train_loss:3.3327 train_time:265260ms step_avg:160.28ms step:1666/1750 train_loss:3.5029 train_time:265423ms step_avg:160.28ms step:1667/1750 train_loss:3.2070 train_time:265591ms step_avg:160.28ms step:1668/1750 train_loss:3.2899 train_time:265762ms step_avg:160.29ms step:1669/1750 train_loss:3.2095 train_time:265928ms step_avg:160.29ms step:1670/1750 train_loss:3.2206 train_time:266096ms step_avg:160.30ms step:1671/1750 train_loss:3.3719 train_time:266263ms step_avg:160.30ms step:1672/1750 train_loss:3.5754 train_time:266429ms step_avg:160.31ms step:1673/1750 train_loss:3.2775 train_time:266598ms step_avg:160.31ms step:1674/1750 train_loss:3.2560 train_time:266764ms step_avg:160.31ms step:1675/1750 train_loss:3.1280 train_time:266935ms step_avg:160.32ms step:1676/1750 train_loss:3.3504 train_time:267106ms step_avg:160.33ms step:1677/1750 train_loss:3.2776 train_time:267275ms step_avg:160.33ms step:1678/1750 train_loss:3.2963 train_time:267444ms step_avg:160.34ms step:1679/1750 train_loss:3.3040 train_time:267610ms step_avg:160.34ms step:1680/1750 train_loss:3.0883 train_time:267786ms step_avg:160.35ms step:1681/1750 train_loss:3.2975 train_time:267957ms step_avg:160.36ms step:1682/1750 train_loss:3.2912 train_time:268125ms step_avg:160.36ms step:1683/1750 train_loss:3.3080 train_time:268291ms step_avg:160.37ms step:1684/1750 train_loss:3.3407 train_time:268458ms step_avg:160.37ms step:1685/1750 train_loss:3.2403 train_time:268622ms step_avg:160.37ms step:1686/1750 train_loss:3.3664 train_time:268791ms step_avg:160.38ms step:1687/1750 train_loss:3.2447 train_time:268960ms step_avg:160.38ms step:1688/1750 train_loss:3.3112 train_time:269133ms step_avg:160.39ms step:1689/1750 train_loss:3.2238 train_time:269303ms step_avg:160.40ms step:1690/1750 train_loss:3.0736 train_time:269476ms step_avg:160.40ms step:1691/1750 train_loss:3.3044 train_time:269641ms step_avg:160.41ms step:1692/1750 train_loss:3.2935 train_time:269804ms step_avg:160.41ms step:1693/1750 train_loss:3.2135 train_time:269970ms step_avg:160.41ms step:1694/1750 train_loss:3.6105 train_time:270145ms step_avg:160.42ms step:1695/1750 train_loss:3.3323 train_time:270316ms step_avg:160.42ms step:1696/1750 train_loss:3.3341 train_time:270483ms step_avg:160.43ms step:1697/1750 train_loss:3.2548 train_time:270647ms step_avg:160.43ms step:1698/1750 train_loss:3.1213 train_time:270815ms step_avg:160.44ms step:1699/1750 train_loss:3.2280 train_time:270983ms step_avg:160.44ms step:1700/1750 train_loss:3.2445 train_time:271292ms step_avg:160.53ms step:1701/1750 train_loss:3.3206 train_time:271463ms step_avg:160.53ms step:1702/1750 train_loss:3.2425 train_time:271626ms step_avg:160.54ms step:1703/1750 train_loss:3.4146 train_time:271789ms step_avg:160.54ms step:1704/1750 train_loss:3.2124 train_time:271958ms step_avg:160.54ms step:1705/1750 train_loss:3.4343 train_time:272122ms step_avg:160.54ms step:1706/1750 train_loss:3.2484 train_time:272286ms step_avg:160.55ms step:1707/1750 train_loss:3.0504 train_time:272458ms step_avg:160.55ms step:1708/1750 train_loss:3.3864 train_time:272622ms step_avg:160.55ms step:1709/1750 train_loss:3.2999 train_time:272925ms step_avg:160.64ms step:1710/1750 train_loss:3.2819 train_time:273104ms step_avg:160.65ms step:1711/1750 train_loss:3.2887 train_time:273272ms step_avg:160.65ms step:1712/1750 train_loss:3.3188 train_time:273441ms step_avg:160.66ms step:1713/1750 train_loss:3.3351 train_time:273607ms step_avg:160.66ms step:1714/1750 train_loss:3.2264 train_time:273778ms step_avg:160.67ms step:1715/1750 train_loss:3.2879 train_time:273956ms step_avg:160.68ms step:1716/1750 train_loss:3.0977 train_time:274121ms step_avg:160.68ms step:1717/1750 train_loss:3.2485 train_time:274285ms step_avg:160.68ms step:1718/1750 train_loss:3.2604 train_time:274453ms step_avg:160.69ms step:1719/1750 train_loss:3.2142 train_time:274623ms step_avg:160.69ms step:1720/1750 train_loss:3.3761 train_time:274799ms step_avg:160.70ms step:1721/1750 train_loss:3.1612 train_time:274979ms step_avg:160.71ms step:1722/1750 train_loss:3.3182 train_time:275145ms step_avg:160.72ms step:1723/1750 train_loss:3.4042 train_time:275322ms step_avg:160.72ms step:1724/1750 train_loss:3.2554 train_time:275489ms step_avg:160.73ms step:1725/1750 train_loss:3.4929 train_time:275664ms step_avg:160.74ms step:1726/1750 train_loss:3.2636 train_time:275838ms step_avg:160.74ms step:1727/1750 train_loss:3.3299 train_time:276002ms step_avg:160.75ms step:1728/1750 train_loss:3.2943 train_time:276169ms step_avg:160.75ms step:1729/1750 train_loss:3.2781 train_time:276341ms step_avg:160.76ms step:1730/1750 train_loss:3.6539 train_time:276510ms step_avg:160.76ms step:1731/1750 train_loss:3.2915 train_time:276675ms step_avg:160.76ms step:1732/1750 train_loss:3.4298 train_time:276842ms step_avg:160.77ms step:1733/1750 train_loss:3.2017 train_time:277005ms step_avg:160.77ms step:1734/1750 train_loss:3.2447 train_time:277173ms step_avg:160.77ms step:1735/1750 train_loss:3.2697 train_time:277342ms step_avg:160.78ms step:1736/1750 train_loss:3.2539 train_time:277513ms step_avg:160.78ms step:1737/1750 train_loss:3.3872 train_time:277685ms step_avg:160.79ms step:1738/1750 train_loss:3.2183 train_time:277862ms step_avg:160.80ms step:1739/1750 train_loss:3.2855 train_time:278034ms step_avg:160.81ms step:1740/1750 train_loss:3.3695 train_time:278203ms step_avg:160.81ms step:1741/1750 train_loss:3.1644 train_time:278371ms step_avg:160.82ms step:1742/1750 train_loss:3.0608 train_time:278540ms step_avg:160.82ms step:1743/1750 train_loss:2.9530 train_time:278716ms step_avg:160.83ms step:1744/1750 train_loss:3.2946 train_time:278881ms step_avg:160.83ms step:1745/1750 train_loss:3.3134 train_time:279042ms step_avg:160.83ms step:1746/1750 train_loss:3.2656 train_time:279206ms step_avg:160.83ms step:1747/1750 train_loss:3.2973 train_time:279379ms step_avg:160.84ms step:1748/1750 train_loss:3.4993 train_time:279559ms step_avg:160.85ms step:1749/1750 train_loss:3.2260 train_time:279726ms step_avg:160.85ms step:1750/1750 train_loss:3.2781 train_time:279897ms step_avg:160.86ms step:1750/1750 val_loss:3.2759 train_time:279948ms step_avg:160.89ms