import os import sys with open(sys.argv[0]) as f: code = f.read() # read the code of this file ASAP, for logging import uuid import time import contextlib from dataclasses import dataclass from pathlib import Path import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist import torch._inductor.config as config from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.attention.flex_attention import BlockMask, flex_attention #KoszarskyB # ----------------------------------------------------------------------------- # Muon optimizer @torch.compile def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7): """ Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at zero even beyond the point where the iteration no longer converges all the way to one everywhere on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model performance at all relative to UV^T, where USV^T = G is the SVD. """ assert len(G.shape) == 2 a, b, c = (3.4445, -4.7750, 2.0315) X = G.bfloat16() X /= (X.norm() + eps) # ensure top singular value <= 1 if G.size(0) > G.size(1): X = X.T for _ in range(steps): A = X @ X.T B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng X = a * X + B @ X if G.size(0) > G.size(1): X = X.T return X class Muon(torch.optim.Optimizer): """ Muon - MomentUm Orthogonalized by Newton-schulz Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- processing step, in which each 2D parameter's update is replaced with the nearest orthogonal matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has the advantage that it can be stably run in bfloat16 on the GPU. Some warnings: - This optimizer assumes that all parameters passed in are 2D. - It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). - To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions. - We believe it is unlikely to work well for training with small batch size. - We believe it may not work well for finetuning pretrained models, but we haven't tested this. - We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M). Arguments: lr: The learning rate used by the internal SGD. momentum: The momentum used by the internal SGD. nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended) ns_steps: The number of Newton-Schulz iteration steps to use. """ def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, ns_steps=5): self.world_size = int(os.environ['WORLD_SIZE']) self.rank = int(os.environ['RANK']) defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, ns_steps=ns_steps) params = list(params) assert all(isinstance(p, torch.Tensor) for p in params) sizes = {p.numel() for p in params} param_groups = [ { 'params': [p for p in params if p.numel() == size], 'update_buffer': [ torch.empty(size, device='cuda', dtype=torch.bfloat16) for _ in range(self.world_size) ], } for size in sizes ] super().__init__(param_groups, defaults) def step(self): for group in self.param_groups: lr = group['lr'] momentum = group['momentum'] nesterov = group['nesterov'] ns_steps = group['ns_steps'] update_buffers = group['update_buffer'] # generate weight updates in distributed fashion params = group['params'] assert len(params) % self.world_size == 0 handle = None params_world = None def update_prev(): if params_world is None: return assert handle is not None handle.wait() for p_world, g_world in zip(params_world, update_buffers): p_world.data.add_( g_world.view_as(p_world), alpha=-lr * max(1, p_world.size(0) / p_world.size(1)) ** 0.5, ) for base_i in range(len(params))[::self.world_size]: p = params[base_i + self.rank] g = p.grad assert g is not None state = self.state[p] if 'momentum_buffer' not in state: state['momentum_buffer'] = torch.zeros_like(g) buf = state['momentum_buffer'] buf.lerp_(g, 1 - momentum) g = g.lerp_(buf, momentum) if nesterov else buf g = zeropower_via_newtonschulz5(g, steps=ns_steps).flatten() update_prev() handle = dist.all_gather(update_buffers, g, async_op=True) params_world = params[base_i : base_i + self.world_size] update_prev() # ----------------------------------------------------------------------------- # PyTorch nn.Module definitions for the GPT-2 model def norm(x): return F.rms_norm(x, (x.size(-1),)) class CastedLinear(nn.Linear): def __init__(self, in_features, out_features): super().__init__(in_features, out_features, bias=False) def forward(self, x): return F.linear(x, self.weight.to(x.dtype)) class Rotary(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim)) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x): seq_len = x.shape[1] if seq_len != self.seq_len_cached: t = torch.arange(seq_len, device=x.device) freqs = torch.outer(t, self.inv_freq) self.seq_len_cached = seq_len self.cos_cached = freqs.cos() self.sin_cached = freqs.sin() cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] # apply_rotary_emb(x, cos, sin) x1, x2 = x.chunk(2, dim=3) y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat((y1, y2), 3).type_as(x) class CausalSelfAttention(nn.Module): def __init__(self, dim, num_heads): super().__init__() assert dim % num_heads == 0 self.num_heads = num_heads self.c_q = CastedLinear(dim, dim) self.c_k = CastedLinear(dim, dim) self.c_v = CastedLinear(dim, dim) self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5])) self.rotary = Rotary(dim // num_heads) # dim // num_heads = head_dim self.c_proj = CastedLinear(dim, dim) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x, vi, block_mask): B, T = x.size(0), x.size(1) # batch size, sequence length assert B == 1, "Must use batch size = 1 for FlexAttention" q = self.c_q(x).view(B, T, self.num_heads, -1) k = self.c_k(x).view(B, T, self.num_heads, -1) v = self.c_v(x).view(B, T, self.num_heads, -1) v = self.lambdas[0] * v + self.lambdas[1] * vi.view_as(v) # @KoszarskyB & @Grad62304977 q, k = norm(q), norm(k) # QK norm @Grad62304977 q, k = self.rotary(q), self.rotary(k) y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask, enable_gqa=True) y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, dim): super().__init__() self.c_fc = CastedLinear(dim, 4 * dim) self.c_proj = CastedLinear(4 * dim, dim) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.attn = CausalSelfAttention(config.model_dim, config.num_heads) self.mlp = MLP(config.model_dim) self.lambdas = nn.Parameter(torch.tensor([1., 0.])) def forward(self, x, vi, x0, block_mask): x = self.lambdas[0] * x + self.lambdas[1] * x0 x = x + self.attn(norm(x), vi, block_mask) x = x + self.mlp(norm(x)) return x class ValueEmbedding(nn.Module): def __init__(self, config: "GPTConfig"): super().__init__() self.__setattr__ self.embed = nn.ModuleList([ nn.Embedding(config.vocab_size, config.model_dim) for _ in range(6) ]) def forward(self, inputs) -> "list[torch.Tensor]": ve = [emb(inputs) for emb in self.embed] ve += reversed(ve) return ve # ----------------------------------------------------------------------------- # The main GPT-2 model @dataclass class GPTConfig: vocab_size : int = 50304 num_layers : int = 12 num_heads : int = 6 # head dim 128 suggested by @Grad62304977 model_dim : int = 768 class GPT(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.num_layers = config.num_layers # U-net design by @brendanh0gan self.num_encoder_layers = config.num_layers // 2 # Half of the layers for encoder self.num_decoder_layers = config.num_layers - self.num_encoder_layers # Remaining for decoder # Add learnable skip connection weights for decoder layers self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers)) self.embed = nn.Embedding(config.vocab_size, config.model_dim) self.blocks = nn.ModuleList([Block(config) for _ in range(config.num_layers)]) # token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning # U-net structure on token value embeddings by @leloykun self.value_embeds = ValueEmbedding(config) self.lm_head = CastedLinear(config.model_dim, config.vocab_size) self.lm_head.weight.data.zero_() # @Grad62304977 def forward( self, inputs: torch.Tensor, targets: torch.Tensor, sliding_window_num_blocks: torch.Tensor, ): BLOCK_SIZE = 128 assert inputs.ndim == 1 docs = (inputs == 50256).cumsum(0) docs_low = docs.view(-1, BLOCK_SIZE)[:, 0].contiguous() docs_high = docs.view(-1, BLOCK_SIZE)[:, -1].contiguous() def document_causal(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx document_mask = docs[q_idx] == docs[kv_idx] return causal_mask & document_mask def dense_to_ordered(dense_mask: torch.Tensor): num_blocks = dense_mask.sum(dim=-1, dtype=torch.int32) indices = dense_mask.argsort(dim=-1, descending=True, stable=True).to(torch.int32) return num_blocks[None, None].contiguous(), indices[None, None].contiguous() def create_doc_swc_block_mask(sliding_window_num_blocks: torch.Tensor): kv_idx = block_idx = torch.arange(512, dtype=torch.int32, device="cuda") q_idx = block_idx[:, None] causal_bm = q_idx >= kv_idx causal_full_bm = q_idx > kv_idx window_bm = q_idx - kv_idx < sliding_window_num_blocks window_full_bm = window_bm # document_bm = (docs_low[q_idx] <= docs_high[kv_idx]) & (docs_low[kv_idx] <= docs_high[q_idx]) document_bm = (docs_low[:, None] <= docs_high) & (docs_low <= docs_high[:, None]) document_full_bm = (docs_low[:, None] == docs_high) & (docs_low == docs_high[:, None]) nonzero_bm = causal_bm & window_bm & document_bm full_bm = causal_full_bm & window_full_bm & document_full_bm kv_num_blocks, kv_indices = dense_to_ordered(nonzero_bm ^ full_bm) full_kv_num_blocks, full_kv_indices = dense_to_ordered(full_bm) return BlockMask.from_kv_blocks( kv_num_blocks, kv_indices, full_kv_num_blocks, full_kv_indices, BLOCK_SIZE=BLOCK_SIZE, mask_mod=document_causal, ) block_mask = create_doc_swc_block_mask(sliding_window_num_blocks) # forward the GPT model itself x = self.embed(inputs[None]) # token embeddings of shape (b, t, model_dim) x = norm(x) # @Grad62304977 x0 = x ve = self.value_embeds(inputs) ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:] # Store outputs for U-Net skip connections skip_connections = [] # Encoder pass - process only the first half of the blocks for i in range(self.num_encoder_layers): x = self.blocks[i](x, ve_enc[i], x0, block_mask) skip_connections.append(x) # Decoder pass - process the remaining blocks with weighted skip connections for i in range(self.num_decoder_layers): x = x + self.skip_weights[i] * skip_connections.pop() # U-net structure on token value embeddings by @leloykun x = self.blocks[self.num_encoder_layers + i](x, ve_dec[i], x0, block_mask) x = norm(x) logits = self.lm_head(x) logits = 30 * torch.tanh(logits / 30) # @Grad62304977 logits = logits.float() loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return loss # ----------------------------------------------------------------------------- # Our own simple Distributed Data Loader def _peek_data_shard(file: Path): # only reads the header, returns header data # header is 256 int32 header = torch.from_file(f"{file}", False, 256, dtype=torch.int32) assert header[0] == 20240520, "magic number mismatch in the data .bin file" assert header[1] == 1, "unsupported version" return int(header[2]) # number of tokens (claimed) def _load_data_shard(path: Path, num_tokens): with path.open("rb", buffering=0) as f: tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True) f.seek(256 * 4) nbytes = f.readinto(tokens.numpy()) assert nbytes == 2 * num_tokens, "number of tokens read does not match header?" return tokens class DistributedDataLoader: def __init__(self, filename_pattern, seq_len, process_rank, num_processes): self.process_rank = process_rank self.num_processes = num_processes self.seq_len = seq_len # glob files that match the pattern self.files = sorted(Path.cwd().glob(filename_pattern)) assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}" # load and validate all data shards, count number of tokens in total self.files_num_tokens = [_peek_data_shard(file) for file in self.files] assert min(self.files_num_tokens) >= num_processes * seq_len + 1 self.total_num_tokens = sum(self.files_num_tokens) self.reset() def reset(self): self.current_shard = -1 self.advance() def advance(self): # advance to next data shard self.current_shard = (self.current_shard + 1) % len(self.files) self.current_position = self.process_rank * self.seq_len self.tokens = _load_data_shard(self.files[self.current_shard], self.files_num_tokens[self.current_shard]) def next_batch(self): batch_size = self.seq_len * self.num_processes buf = self.tokens[self.current_position:self.current_position+self.seq_len+1] # host side async is sufficient; # no performance improvement was observed when introducing a separate stream. inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # inputs targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # targets # advance current position and load next shard if necessary self.current_position += batch_size if self.current_position + batch_size + 1 >= len(self.tokens): self.advance() return inputs, targets # ----------------------------------------------------------------------------- # int main @dataclass class Hyperparameters: # data hyperparams input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on # optimization hyperparams batch_size : int = 8 # batch size, in sequences, across all devices sequence_length : int = 64*1024 # sequence length, in tokens num_iterations : int = 1480 # number of iterations to run warmup_iters : int = 0 cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule weight_decay : float = 0 # evaluation and logging hyperparams val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end args = Hyperparameters() # set up DDP (distributed data parallel). torchrun sets this env variable ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) ddp_world_size = int(os.environ['WORLD_SIZE']) assert torch.cuda.is_available() device = torch.device(f"cuda:{ddp_local_rank}") torch.cuda.set_device(device) print(f"using device: {device}") dist.init_process_group(backend='nccl', device_id=device) dist.barrier() master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc. # begin logging logfile = None if master_process: run_id = uuid.uuid4() logdir = Path("logs") / f"{run_id}" logdir.mkdir(exist_ok=True) logfile = Path("logs") / f"{run_id}.txt" print(logfile.stem) # create the log file with logfile.open("w") as f: # begin the log by printing this file (the Python code) print(code, file=f) print("=" * 100, file=f) def print0(s, logonly=False): if master_process: with logfile.open("a") as f: if not logonly: print(s) print(s, file=f) # log information about the hardware/software environment this is running on # and print the full `nvidia-smi` to file print0(f"Running python {sys.version}") print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:") import subprocess result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) print0(f'{result.stdout}', logonly=True) print0('='*100, logonly=True) # calculate the number of steps to take in the val loop. assert args.val_tokens % (args.sequence_length * ddp_world_size) == 0 val_steps = args.val_tokens // (args.sequence_length * ddp_world_size) # calculate the steps of gradient accumulation required to attain the desired global batch size. assert args.batch_size % (ddp_world_size) == 0 train_accumulation_steps = args.batch_size // ddp_world_size # load tokens train_loader = DistributedDataLoader(args.input_bin, args.sequence_length, ddp_rank, ddp_world_size) val_loader = DistributedDataLoader(args.input_val_bin, args.sequence_length, ddp_rank, ddp_world_size) print0(f"Training DataLoader: total number of tokens: {train_loader.total_num_tokens} across {len(train_loader.files)} files") print0(f"Validation DataLoader: total number of tokens: {val_loader.total_num_tokens} across {len(val_loader.files)} files") print0('='*100, logonly=True) inputs_train, targets_train = train_loader.next_batch() # there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977. # this originates from Karpathy's experiments. num_vocab = 50304 model = GPT(GPTConfig(vocab_size=num_vocab, num_layers=12, num_heads=6, model_dim=768)) model = model.cuda().bfloat16() for m in model.modules(): if isinstance(m, CastedLinear): m.float() config.coordinate_descent_tuning = True # suggested by @Chillee model = torch.compile(model) # here we wrap model into DDP container model = DDP(model, device_ids=[ddp_local_rank], broadcast_buffers=False, gradient_as_bucket_view=True) raw_model = model.module # always contains the "raw" unwrapped model # init the optimizer(s) embed_params = [*raw_model.embed.parameters(), *raw_model.value_embeds.parameters()] optimizer1 = torch.optim.Adam(embed_params, lr=0.6, betas=(0.8, 0.95), fused=True) optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True) params = list(raw_model.blocks.parameters()) matrix_params = [p for p in params if p.ndim == 2] scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights] optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95) optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) optimizers = [optimizer1, optimizer2, optimizer3, optimizer4] # learning rate decay scheduler (linear warmup and cooldown) def get_lr(it): assert it <= args.num_iterations # 1) linear warmup for warmup_iters steps if it < args.warmup_iters: return (it+1) / args.warmup_iters # 2) constant lr for a while elif it < args.num_iterations - args.cooldown_iters: return 1.0 # 3) linear cooldown else: decay_ratio = (args.num_iterations - it) / args.cooldown_iters return decay_ratio schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers] sliding_window_num_blocks = torch.tensor(1, dtype=torch.int32, device="cuda") sw_num_blocks_prev = 1 # Start training loop training_time_ms = 0 # start the clock torch.cuda.synchronize() t0 = time.perf_counter() # begin training for step in range(args.num_iterations + 1): last_step = (step == args.num_iterations) # This effectively ignores timing first 10 steps, which are slower for weird reasons. # Alternately, and slightly more correctly in terms of benchmarking, we could do 10 # steps with dummy data first, and then re-initialize the model and reset the loader. if step == 10: training_time_ms = 0 t0 = time.perf_counter() timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val # Linearly increase the sliding window size over training in chunks of 64 from 64 -> 1792. By @fernbear.bsky.social frac_done = step / args.num_iterations # training progress sw_num_blocks = int(((1 - frac_done) * 64 + frac_done * 1792 + 64) // 128) if sw_num_blocks != sw_num_blocks_prev: sliding_window_num_blocks.copy_(sw_num_blocks, non_blocking=True) sw_num_blocks_prev = sw_num_blocks # once in a while evaluate the validation dataset if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.perf_counter() - t0) # run validation batches model.eval() val_loader.reset() val_loss = 0.0 for _ in range(val_steps): with torch.no_grad(): inputs_val, targets_val = val_loader.next_batch() val_loss += model(inputs_val, targets_val, sliding_window_num_blocks) dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) val_loss /= val_steps # log val loss to console and to logfile print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms') # start the clock again torch.cuda.synchronize() t0 = time.perf_counter() if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.perf_counter() - t0) # save the state of the training process log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step)) # start the clock again torch.cuda.synchronize() t0 = time.perf_counter() # bit confusing: we want to make sure to eval on 0th iteration # but also after the very last iteration. so we loop for step <= num_iterations # instead of just < num_iterations (one extra due to <=), only to do # the validation/sampling one last time, and then we break right here as we're done. if last_step: break # --------------- TRAINING SECTION BEGIN ----------------- model.train() for i in range(1, train_accumulation_steps + 1): with contextlib.ExitStack() as stack: if i < train_accumulation_steps: # there's no need to sync gradients every accumulation step stack.enter_context(model.no_sync()) if step >= 5: stack.enter_context(torch.compiler.set_stance(skip_guard_eval_unsafe=True)) model(inputs_train, targets_train, sliding_window_num_blocks).backward() inputs_train, targets_train = train_loader.next_batch() if train_accumulation_steps != 1: for p in model.parameters(): p.grad /= train_accumulation_steps # momentum warmup for Muon frac = min(step/300, 1) for group in optimizer3.param_groups: group['momentum'] = (1 - frac) * 0.85 + frac * 0.95 # step the optimizers and schedulers for opt, sched in zip(optimizers, schedulers): opt.step() sched.step() # null the gradients model.zero_grad(set_to_none=True) # --------------- TRAINING SECTION END ------------------- # everything that follows now is just diagnostics, prints, logging, etc. approx_time = training_time_ms + 1000 * (time.perf_counter() - t0) print0(f"step:{step+1}/{args.num_iterations} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms") print0(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB") # ------------------------------------------------------------------------- # clean up nice dist.destroy_process_group() ==================================================================================================== Running python 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4 nvidia-smi: Wed Dec 11 09:29:38 2024 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 | | N/A 38C P0 125W / 700W | 7084MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 | | N/A 30C P0 116W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 | | N/A 29C P0 111W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 | | N/A 36C P0 114W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 | | N/A 38C P0 119W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 | | N/A 30C P0 118W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 | | N/A 36C P0 119W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 | | N/A 30C P0 118W / 700W | 3211MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| +---------------------------------------------------------------------------------------+ ==================================================================================================== Training DataLoader: total number of tokens: 1000000000 across 10 files Validation DataLoader: total number of tokens: 100000000 across 1 files ==================================================================================================== step:0/1480 val_loss:10.8258 train_time:0ms step_avg:nanms step:1/1480 train_time:28925ms step_avg:nanms step:2/1480 train_time:29102ms step_avg:nanms step:3/1480 train_time:29226ms step_avg:nanms step:4/1480 train_time:29365ms step_avg:nanms step:5/1480 train_time:29507ms step_avg:nanms step:6/1480 train_time:29650ms step_avg:nanms step:7/1480 train_time:29791ms step_avg:nanms step:8/1480 train_time:29934ms step_avg:nanms step:9/1480 train_time:30076ms step_avg:nanms step:10/1480 train_time:30224ms step_avg:nanms step:11/1480 train_time:136ms step_avg:nanms step:12/1480 train_time:276ms step_avg:nanms step:13/1480 train_time:420ms step_avg:139.91ms step:14/1480 train_time:564ms step_avg:140.97ms step:15/1480 train_time:707ms step_avg:141.35ms step:16/1480 train_time:849ms step_avg:141.55ms step:17/1480 train_time:990ms step_avg:141.49ms step:18/1480 train_time:1134ms step_avg:141.73ms step:19/1480 train_time:1277ms step_avg:141.85ms step:20/1480 train_time:1421ms step_avg:142.07ms step:21/1480 train_time:1563ms step_avg:142.08ms step:22/1480 train_time:1706ms step_avg:142.18ms step:23/1480 train_time:1849ms step_avg:142.24ms step:24/1480 train_time:1990ms step_avg:142.11ms step:25/1480 train_time:2132ms step_avg:142.10ms step:26/1480 train_time:2274ms step_avg:142.15ms step:27/1480 train_time:2418ms step_avg:142.26ms step:28/1480 train_time:2563ms step_avg:142.38ms step:29/1480 train_time:2706ms step_avg:142.43ms step:30/1480 train_time:3217ms step_avg:160.85ms step:31/1480 train_time:3317ms step_avg:157.95ms step:32/1480 train_time:3461ms step_avg:157.32ms step:33/1480 train_time:3603ms step_avg:156.66ms step:34/1480 train_time:3746ms step_avg:156.07ms step:35/1480 train_time:3886ms step_avg:155.45ms step:36/1480 train_time:4028ms step_avg:154.93ms step:37/1480 train_time:4171ms step_avg:154.50ms step:38/1480 train_time:4316ms step_avg:154.14ms step:39/1480 train_time:4461ms step_avg:153.84ms step:40/1480 train_time:4606ms step_avg:153.52ms step:41/1480 train_time:4749ms step_avg:153.18ms step:42/1480 train_time:4890ms step_avg:152.82ms step:43/1480 train_time:5033ms step_avg:152.50ms step:44/1480 train_time:5177ms step_avg:152.26ms step:45/1480 train_time:5320ms step_avg:152.00ms step:46/1480 train_time:5463ms step_avg:151.76ms step:47/1480 train_time:5607ms step_avg:151.55ms step:48/1480 train_time:5749ms step_avg:151.28ms step:49/1480 train_time:5890ms step_avg:151.02ms step:50/1480 train_time:6032ms step_avg:150.81ms step:51/1480 train_time:6176ms step_avg:150.62ms step:52/1480 train_time:6320ms step_avg:150.47ms step:53/1480 train_time:6464ms step_avg:150.32ms step:54/1480 train_time:6607ms step_avg:150.15ms step:55/1480 train_time:6749ms step_avg:149.97ms step:56/1480 train_time:6891ms step_avg:149.80ms step:57/1480 train_time:7034ms step_avg:149.66ms step:58/1480 train_time:7176ms step_avg:149.50ms step:59/1480 train_time:7320ms step_avg:149.40ms step:60/1480 train_time:7465ms step_avg:149.29ms step:61/1480 train_time:7607ms step_avg:149.17ms step:62/1480 train_time:7749ms step_avg:149.03ms step:63/1480 train_time:7892ms step_avg:148.90ms step:64/1480 train_time:8034ms step_avg:148.78ms step:65/1480 train_time:8179ms step_avg:148.72ms step:66/1480 train_time:8323ms step_avg:148.63ms step:67/1480 train_time:8465ms step_avg:148.52ms step:68/1480 train_time:8608ms step_avg:148.42ms step:69/1480 train_time:8751ms step_avg:148.31ms step:70/1480 train_time:8892ms step_avg:148.19ms step:71/1480 train_time:9033ms step_avg:148.08ms step:72/1480 train_time:9175ms step_avg:147.99ms step:73/1480 train_time:9320ms step_avg:147.93ms step:74/1480 train_time:9463ms step_avg:147.86ms step:75/1480 train_time:9606ms step_avg:147.79ms step:76/1480 train_time:9747ms step_avg:147.69ms step:77/1480 train_time:9889ms step_avg:147.59ms step:78/1480 train_time:10030ms step_avg:147.51ms step:79/1480 train_time:10549ms step_avg:152.89ms step:80/1480 train_time:10650ms step_avg:152.14ms step:81/1480 train_time:10791ms step_avg:151.98ms step:82/1480 train_time:10932ms step_avg:151.84ms step:83/1480 train_time:11075ms step_avg:151.71ms step:84/1480 train_time:11217ms step_avg:151.59ms step:85/1480 train_time:11360ms step_avg:151.47ms step:86/1480 train_time:11504ms step_avg:151.37ms step:87/1480 train_time:11648ms step_avg:151.28ms step:88/1480 train_time:11790ms step_avg:151.15ms step:89/1480 train_time:11933ms step_avg:151.05ms step:90/1480 train_time:12076ms step_avg:150.95ms step:91/1480 train_time:12219ms step_avg:150.85ms step:92/1480 train_time:12362ms step_avg:150.76ms step:93/1480 train_time:12505ms step_avg:150.66ms step:94/1480 train_time:12648ms step_avg:150.57ms step:95/1480 train_time:12790ms step_avg:150.47ms step:96/1480 train_time:12932ms step_avg:150.37ms step:97/1480 train_time:13465ms step_avg:154.77ms step:98/1480 train_time:13566ms step_avg:154.15ms step:99/1480 train_time:13709ms step_avg:154.03ms step:100/1480 train_time:13850ms step_avg:153.89ms step:101/1480 train_time:13996ms step_avg:153.80ms step:102/1480 train_time:14134ms step_avg:153.63ms step:103/1480 train_time:14276ms step_avg:153.51ms step:104/1480 train_time:14420ms step_avg:153.40ms step:105/1480 train_time:14563ms step_avg:153.29ms step:106/1480 train_time:14706ms step_avg:153.18ms step:107/1480 train_time:14848ms step_avg:153.07ms step:108/1480 train_time:14989ms step_avg:152.95ms step:109/1480 train_time:15130ms step_avg:152.82ms step:110/1480 train_time:15272ms step_avg:152.72ms step:111/1480 train_time:15417ms step_avg:152.64ms step:112/1480 train_time:15564ms step_avg:152.59ms step:113/1480 train_time:15710ms step_avg:152.52ms step:114/1480 train_time:15854ms step_avg:152.44ms step:115/1480 train_time:16000ms step_avg:152.38ms step:116/1480 train_time:16147ms step_avg:152.33ms step:117/1480 train_time:16291ms step_avg:152.25ms step:118/1480 train_time:16438ms step_avg:152.20ms step:119/1480 train_time:16583ms step_avg:152.14ms step:120/1480 train_time:16729ms step_avg:152.08ms step:121/1480 train_time:16874ms step_avg:152.02ms step:122/1480 train_time:17021ms step_avg:151.97ms step:123/1480 train_time:17167ms step_avg:151.92ms step:124/1480 train_time:17312ms step_avg:151.86ms step:125/1480 train_time:17458ms step_avg:151.81ms step:125/1480 val_loss:4.4180 train_time:17523ms step_avg:152.38ms step:126/1480 train_time:17616ms step_avg:151.86ms step:127/1480 train_time:17762ms step_avg:151.81ms step:128/1480 train_time:17909ms step_avg:151.77ms step:129/1480 train_time:18054ms step_avg:151.71ms step:130/1480 train_time:18198ms step_avg:151.65ms step:131/1480 train_time:18345ms step_avg:151.61ms step:132/1480 train_time:18491ms step_avg:151.56ms step:133/1480 train_time:18635ms step_avg:151.50ms step:134/1480 train_time:18783ms step_avg:151.48ms step:135/1480 train_time:18931ms step_avg:151.45ms step:136/1480 train_time:19076ms step_avg:151.39ms step:137/1480 train_time:19221ms step_avg:151.35ms step:138/1480 train_time:19368ms step_avg:151.31ms step:139/1480 train_time:19513ms step_avg:151.27ms step:140/1480 train_time:19658ms step_avg:151.22ms step:141/1480 train_time:19804ms step_avg:151.17ms step:142/1480 train_time:19950ms step_avg:151.14ms step:143/1480 train_time:20095ms step_avg:151.09ms step:144/1480 train_time:20240ms step_avg:151.04ms step:145/1480 train_time:20386ms step_avg:151.01ms step:146/1480 train_time:20531ms step_avg:150.96ms step:147/1480 train_time:20676ms step_avg:150.92ms step:148/1480 train_time:20823ms step_avg:150.89ms step:149/1480 train_time:20969ms step_avg:150.86ms step:150/1480 train_time:21114ms step_avg:150.81ms step:151/1480 train_time:21260ms step_avg:150.78ms step:152/1480 train_time:21407ms step_avg:150.76ms step:153/1480 train_time:21552ms step_avg:150.72ms step:154/1480 train_time:21696ms step_avg:150.67ms step:155/1480 train_time:21843ms step_avg:150.64ms step:156/1480 train_time:21989ms step_avg:150.61ms step:157/1480 train_time:22134ms step_avg:150.57ms step:158/1480 train_time:22279ms step_avg:150.53ms step:159/1480 train_time:22425ms step_avg:150.50ms step:160/1480 train_time:22571ms step_avg:150.48ms step:161/1480 train_time:22716ms step_avg:150.44ms step:162/1480 train_time:22862ms step_avg:150.41ms step:163/1480 train_time:23009ms step_avg:150.38ms step:164/1480 train_time:23154ms step_avg:150.35ms step:165/1480 train_time:23298ms step_avg:150.31ms step:166/1480 train_time:23445ms step_avg:150.29ms step:167/1480 train_time:23591ms step_avg:150.26ms step:168/1480 train_time:23735ms step_avg:150.22ms step:169/1480 train_time:23881ms step_avg:150.20ms step:170/1480 train_time:24026ms step_avg:150.17ms step:171/1480 train_time:24172ms step_avg:150.14ms step:172/1480 train_time:24316ms step_avg:150.10ms step:173/1480 train_time:24462ms step_avg:150.07ms step:174/1480 train_time:24609ms step_avg:150.06ms step:175/1480 train_time:24754ms step_avg:150.02ms step:176/1480 train_time:24899ms step_avg:150.00ms step:177/1480 train_time:25046ms step_avg:149.97ms step:178/1480 train_time:25192ms step_avg:149.95ms step:179/1480 train_time:25337ms step_avg:149.92ms step:180/1480 train_time:25484ms step_avg:149.91ms step:181/1480 train_time:25630ms step_avg:149.89ms step:182/1480 train_time:25777ms step_avg:149.87ms step:183/1480 train_time:25923ms step_avg:149.85ms step:184/1480 train_time:26071ms step_avg:149.83ms step:185/1480 train_time:26215ms step_avg:149.80ms step:186/1480 train_time:26362ms step_avg:149.78ms step:187/1480 train_time:26508ms step_avg:149.76ms step:188/1480 train_time:26654ms step_avg:149.74ms step:189/1480 train_time:26828ms step_avg:149.87ms step:190/1480 train_time:26944ms step_avg:149.69ms step:191/1480 train_time:27090ms step_avg:149.67ms step:192/1480 train_time:27234ms step_avg:149.64ms step:193/1480 train_time:27379ms step_avg:149.61ms step:194/1480 train_time:27525ms step_avg:149.59ms step:195/1480 train_time:27671ms step_avg:149.57ms step:196/1480 train_time:27816ms step_avg:149.55ms step:197/1480 train_time:27960ms step_avg:149.52ms step:198/1480 train_time:28108ms step_avg:149.51ms step:199/1480 train_time:28254ms step_avg:149.49ms step:200/1480 train_time:28398ms step_avg:149.46ms step:201/1480 train_time:28545ms step_avg:149.45ms step:202/1480 train_time:28691ms step_avg:149.43ms step:203/1480 train_time:28835ms step_avg:149.40ms step:204/1480 train_time:28981ms step_avg:149.39ms step:205/1480 train_time:29127ms step_avg:149.37ms step:206/1480 train_time:29273ms step_avg:149.35ms step:207/1480 train_time:29418ms step_avg:149.33ms step:208/1480 train_time:29564ms step_avg:149.31ms step:209/1480 train_time:29711ms step_avg:149.30ms step:210/1480 train_time:29856ms step_avg:149.28ms step:211/1480 train_time:30000ms step_avg:149.26ms step:212/1480 train_time:30148ms step_avg:149.25ms step:213/1480 train_time:30294ms step_avg:149.23ms step:214/1480 train_time:30438ms step_avg:149.20ms step:215/1480 train_time:30584ms step_avg:149.19ms step:216/1480 train_time:30730ms step_avg:149.17ms step:217/1480 train_time:30877ms step_avg:149.16ms step:218/1480 train_time:31023ms step_avg:149.15ms step:219/1480 train_time:31169ms step_avg:149.13ms step:220/1480 train_time:31314ms step_avg:149.11ms step:221/1480 train_time:31874ms step_avg:151.06ms step:222/1480 train_time:31981ms step_avg:150.85ms step:223/1480 train_time:32130ms step_avg:150.84ms step:224/1480 train_time:32278ms step_avg:150.83ms step:225/1480 train_time:32426ms step_avg:150.82ms step:226/1480 train_time:32574ms step_avg:150.81ms step:227/1480 train_time:32722ms step_avg:150.79ms step:228/1480 train_time:32872ms step_avg:150.79ms step:229/1480 train_time:33021ms step_avg:150.78ms step:230/1480 train_time:33169ms step_avg:150.77ms step:231/1480 train_time:33317ms step_avg:150.76ms step:232/1480 train_time:33467ms step_avg:150.75ms step:233/1480 train_time:33615ms step_avg:150.74ms step:234/1480 train_time:33764ms step_avg:150.73ms step:235/1480 train_time:33913ms step_avg:150.73ms step:236/1480 train_time:34062ms step_avg:150.72ms step:237/1480 train_time:34212ms step_avg:150.71ms step:238/1480 train_time:34360ms step_avg:150.70ms step:239/1480 train_time:34509ms step_avg:150.69ms step:240/1480 train_time:34657ms step_avg:150.68ms step:241/1480 train_time:34805ms step_avg:150.67ms step:242/1480 train_time:34954ms step_avg:150.67ms step:243/1480 train_time:35102ms step_avg:150.65ms step:244/1480 train_time:35251ms step_avg:150.65ms step:245/1480 train_time:35399ms step_avg:150.63ms step:246/1480 train_time:35549ms step_avg:150.63ms step:247/1480 train_time:35697ms step_avg:150.62ms step:248/1480 train_time:35846ms step_avg:150.61ms step:249/1480 train_time:35995ms step_avg:150.61ms step:250/1480 train_time:36142ms step_avg:150.59ms step:250/1480 val_loss:3.9974 train_time:36209ms step_avg:150.87ms step:251/1480 train_time:36301ms step_avg:150.63ms step:252/1480 train_time:36450ms step_avg:150.62ms step:253/1480 train_time:36599ms step_avg:150.61ms step:254/1480 train_time:36747ms step_avg:150.60ms step:255/1480 train_time:36896ms step_avg:150.60ms step:256/1480 train_time:37044ms step_avg:150.59ms step:257/1480 train_time:37193ms step_avg:150.58ms step:258/1480 train_time:37341ms step_avg:150.57ms step:259/1480 train_time:37493ms step_avg:150.57ms step:260/1480 train_time:37641ms step_avg:150.56ms step:261/1480 train_time:37789ms step_avg:150.56ms step:262/1480 train_time:37938ms step_avg:150.55ms step:263/1480 train_time:38086ms step_avg:150.54ms step:264/1480 train_time:38235ms step_avg:150.53ms step:265/1480 train_time:38384ms step_avg:150.53ms step:266/1480 train_time:38533ms step_avg:150.52ms step:267/1480 train_time:38681ms step_avg:150.51ms step:268/1480 train_time:38829ms step_avg:150.50ms step:269/1480 train_time:38977ms step_avg:150.49ms step:270/1480 train_time:39124ms step_avg:150.48ms step:271/1480 train_time:39274ms step_avg:150.47ms step:272/1480 train_time:39421ms step_avg:150.46ms step:273/1480 train_time:39571ms step_avg:150.46ms step:274/1480 train_time:39719ms step_avg:150.45ms step:275/1480 train_time:39870ms step_avg:150.45ms step:276/1480 train_time:40018ms step_avg:150.44ms step:277/1480 train_time:40166ms step_avg:150.43ms step:278/1480 train_time:40315ms step_avg:150.43ms step:279/1480 train_time:40463ms step_avg:150.42ms step:280/1480 train_time:40612ms step_avg:150.42ms step:281/1480 train_time:40760ms step_avg:150.41ms step:282/1480 train_time:40909ms step_avg:150.40ms step:283/1480 train_time:41058ms step_avg:150.39ms step:284/1480 train_time:41206ms step_avg:150.39ms step:285/1480 train_time:41354ms step_avg:150.38ms step:286/1480 train_time:41503ms step_avg:150.37ms step:287/1480 train_time:41652ms step_avg:150.37ms step:288/1480 train_time:41800ms step_avg:150.36ms step:289/1480 train_time:41949ms step_avg:150.36ms step:290/1480 train_time:42098ms step_avg:150.35ms step:291/1480 train_time:42247ms step_avg:150.34ms step:292/1480 train_time:42395ms step_avg:150.34ms step:293/1480 train_time:42543ms step_avg:150.33ms step:294/1480 train_time:42693ms step_avg:150.33ms step:295/1480 train_time:42841ms step_avg:150.32ms step:296/1480 train_time:42991ms step_avg:150.32ms step:297/1480 train_time:43139ms step_avg:150.31ms step:298/1480 train_time:43288ms step_avg:150.31ms step:299/1480 train_time:43437ms step_avg:150.30ms step:300/1480 train_time:43585ms step_avg:150.29ms step:301/1480 train_time:43734ms step_avg:150.29ms step:302/1480 train_time:43881ms step_avg:150.28ms step:303/1480 train_time:44030ms step_avg:150.27ms step:304/1480 train_time:44179ms step_avg:150.27ms step:305/1480 train_time:44326ms step_avg:150.26ms step:306/1480 train_time:44475ms step_avg:150.25ms step:307/1480 train_time:44622ms step_avg:150.24ms step:308/1480 train_time:44771ms step_avg:150.24ms step:309/1480 train_time:44920ms step_avg:150.23ms step:310/1480 train_time:45068ms step_avg:150.23ms step:311/1480 train_time:45217ms step_avg:150.22ms step:312/1480 train_time:45364ms step_avg:150.21ms step:313/1480 train_time:45513ms step_avg:150.21ms step:314/1480 train_time:45661ms step_avg:150.20ms step:315/1480 train_time:45809ms step_avg:150.19ms step:316/1480 train_time:45956ms step_avg:150.18ms step:317/1480 train_time:46104ms step_avg:150.18ms step:318/1480 train_time:46253ms step_avg:150.17ms step:319/1480 train_time:46401ms step_avg:150.16ms step:320/1480 train_time:46550ms step_avg:150.16ms step:321/1480 train_time:46699ms step_avg:150.16ms step:322/1480 train_time:46847ms step_avg:150.15ms step:323/1480 train_time:46996ms step_avg:150.15ms step:324/1480 train_time:47143ms step_avg:150.14ms step:325/1480 train_time:47294ms step_avg:150.14ms step:326/1480 train_time:47441ms step_avg:150.13ms step:327/1480 train_time:47591ms step_avg:150.13ms step:328/1480 train_time:47739ms step_avg:150.12ms step:329/1480 train_time:47888ms step_avg:150.12ms step:330/1480 train_time:48038ms step_avg:150.12ms step:331/1480 train_time:48189ms step_avg:150.12ms step:332/1480 train_time:48339ms step_avg:150.12ms step:333/1480 train_time:48491ms step_avg:150.13ms step:334/1480 train_time:48641ms step_avg:150.13ms step:335/1480 train_time:48793ms step_avg:150.13ms step:336/1480 train_time:48944ms step_avg:150.14ms step:337/1480 train_time:49096ms step_avg:150.14ms step:338/1480 train_time:49246ms step_avg:150.14ms step:339/1480 train_time:49397ms step_avg:150.14ms step:340/1480 train_time:49547ms step_avg:150.14ms step:341/1480 train_time:49698ms step_avg:150.14ms step:342/1480 train_time:49848ms step_avg:150.14ms step:343/1480 train_time:50000ms step_avg:150.15ms step:344/1480 train_time:50150ms step_avg:150.15ms step:345/1480 train_time:50301ms step_avg:150.15ms step:346/1480 train_time:50452ms step_avg:150.15ms step:347/1480 train_time:50603ms step_avg:150.16ms step:348/1480 train_time:50755ms step_avg:150.16ms step:349/1480 train_time:50906ms step_avg:150.17ms step:350/1480 train_time:51057ms step_avg:150.17ms step:351/1480 train_time:51209ms step_avg:150.17ms step:352/1480 train_time:51360ms step_avg:150.18ms step:353/1480 train_time:51511ms step_avg:150.18ms step:354/1480 train_time:51662ms step_avg:150.18ms step:355/1480 train_time:51813ms step_avg:150.18ms step:356/1480 train_time:51963ms step_avg:150.18ms step:357/1480 train_time:52115ms step_avg:150.19ms step:358/1480 train_time:52266ms step_avg:150.19ms step:359/1480 train_time:52418ms step_avg:150.19ms step:360/1480 train_time:52568ms step_avg:150.20ms step:361/1480 train_time:52719ms step_avg:150.20ms step:362/1480 train_time:52870ms step_avg:150.20ms step:363/1480 train_time:53020ms step_avg:150.20ms step:364/1480 train_time:53172ms step_avg:150.20ms step:365/1480 train_time:53322ms step_avg:150.20ms step:366/1480 train_time:53474ms step_avg:150.21ms step:367/1480 train_time:53623ms step_avg:150.21ms step:368/1480 train_time:53775ms step_avg:150.21ms step:369/1480 train_time:53924ms step_avg:150.21ms step:370/1480 train_time:54076ms step_avg:150.21ms step:371/1480 train_time:54225ms step_avg:150.21ms step:372/1480 train_time:54377ms step_avg:150.21ms step:373/1480 train_time:54526ms step_avg:150.21ms step:374/1480 train_time:54678ms step_avg:150.21ms step:375/1480 train_time:54827ms step_avg:150.21ms step:375/1480 val_loss:3.8087 train_time:54896ms step_avg:150.40ms step:376/1480 train_time:54987ms step_avg:150.24ms step:377/1480 train_time:55138ms step_avg:150.24ms step:378/1480 train_time:55289ms step_avg:150.24ms step:379/1480 train_time:55463ms step_avg:150.31ms step:380/1480 train_time:55590ms step_avg:150.24ms step:381/1480 train_time:55739ms step_avg:150.24ms step:382/1480 train_time:55889ms step_avg:150.24ms step:383/1480 train_time:56040ms step_avg:150.24ms step:384/1480 train_time:56191ms step_avg:150.24ms step:385/1480 train_time:56343ms step_avg:150.25ms step:386/1480 train_time:56493ms step_avg:150.25ms step:387/1480 train_time:56643ms step_avg:150.25ms step:388/1480 train_time:56793ms step_avg:150.25ms step:389/1480 train_time:56945ms step_avg:150.25ms step:390/1480 train_time:57094ms step_avg:150.25ms step:391/1480 train_time:57246ms step_avg:150.25ms step:392/1480 train_time:57396ms step_avg:150.25ms step:393/1480 train_time:57547ms step_avg:150.25ms step:394/1480 train_time:57698ms step_avg:150.25ms step:395/1480 train_time:57849ms step_avg:150.26ms step:396/1480 train_time:57999ms step_avg:150.26ms step:397/1480 train_time:58150ms step_avg:150.26ms step:398/1480 train_time:58302ms step_avg:150.26ms step:399/1480 train_time:58453ms step_avg:150.27ms step:400/1480 train_time:58606ms step_avg:150.27ms step:401/1480 train_time:58759ms step_avg:150.28ms step:402/1480 train_time:58908ms step_avg:150.28ms step:403/1480 train_time:59059ms step_avg:150.28ms step:404/1480 train_time:59210ms step_avg:150.28ms step:405/1480 train_time:59360ms step_avg:150.28ms step:406/1480 train_time:59511ms step_avg:150.28ms step:407/1480 train_time:59662ms step_avg:150.28ms step:408/1480 train_time:59813ms step_avg:150.28ms step:409/1480 train_time:59964ms step_avg:150.29ms step:410/1480 train_time:60114ms step_avg:150.28ms step:411/1480 train_time:60265ms step_avg:150.29ms step:412/1480 train_time:60415ms step_avg:150.29ms step:413/1480 train_time:60567ms step_avg:150.29ms step:414/1480 train_time:60719ms step_avg:150.29ms step:415/1480 train_time:60870ms step_avg:150.30ms step:416/1480 train_time:61020ms step_avg:150.30ms step:417/1480 train_time:61171ms step_avg:150.30ms step:418/1480 train_time:61322ms step_avg:150.30ms step:419/1480 train_time:61473ms step_avg:150.30ms step:420/1480 train_time:61625ms step_avg:150.30ms step:421/1480 train_time:61774ms step_avg:150.30ms step:422/1480 train_time:61925ms step_avg:150.30ms step:423/1480 train_time:62076ms step_avg:150.30ms step:424/1480 train_time:62228ms step_avg:150.31ms step:425/1480 train_time:62378ms step_avg:150.31ms step:426/1480 train_time:62529ms step_avg:150.31ms step:427/1480 train_time:62679ms step_avg:150.31ms step:428/1480 train_time:62830ms step_avg:150.31ms step:429/1480 train_time:62980ms step_avg:150.31ms step:430/1480 train_time:63131ms step_avg:150.31ms step:431/1480 train_time:63282ms step_avg:150.31ms step:432/1480 train_time:63433ms step_avg:150.32ms step:433/1480 train_time:63585ms step_avg:150.32ms step:434/1480 train_time:63735ms step_avg:150.32ms step:435/1480 train_time:63887ms step_avg:150.32ms step:436/1480 train_time:64037ms step_avg:150.32ms step:437/1480 train_time:64188ms step_avg:150.32ms step:438/1480 train_time:64338ms step_avg:150.32ms step:439/1480 train_time:64490ms step_avg:150.33ms step:440/1480 train_time:64642ms step_avg:150.33ms step:441/1480 train_time:64794ms step_avg:150.33ms step:442/1480 train_time:64948ms step_avg:150.34ms step:443/1480 train_time:65100ms step_avg:150.35ms step:444/1480 train_time:65253ms step_avg:150.35ms step:445/1480 train_time:65406ms step_avg:150.36ms step:446/1480 train_time:65558ms step_avg:150.36ms step:447/1480 train_time:65711ms step_avg:150.37ms step:448/1480 train_time:65864ms step_avg:150.37ms step:449/1480 train_time:66016ms step_avg:150.38ms step:450/1480 train_time:66169ms step_avg:150.39ms step:451/1480 train_time:66324ms step_avg:150.39ms step:452/1480 train_time:66477ms step_avg:150.40ms step:453/1480 train_time:66630ms step_avg:150.41ms step:454/1480 train_time:66782ms step_avg:150.41ms step:455/1480 train_time:66934ms step_avg:150.41ms step:456/1480 train_time:67088ms step_avg:150.42ms step:457/1480 train_time:67241ms step_avg:150.43ms step:458/1480 train_time:67393ms step_avg:150.43ms step:459/1480 train_time:67547ms step_avg:150.44ms step:460/1480 train_time:67699ms step_avg:150.44ms step:461/1480 train_time:67851ms step_avg:150.45ms step:462/1480 train_time:68005ms step_avg:150.45ms step:463/1480 train_time:68159ms step_avg:150.46ms step:464/1480 train_time:68311ms step_avg:150.47ms step:465/1480 train_time:68464ms step_avg:150.47ms step:466/1480 train_time:68616ms step_avg:150.47ms step:467/1480 train_time:68770ms step_avg:150.48ms step:468/1480 train_time:68923ms step_avg:150.49ms step:469/1480 train_time:69076ms step_avg:150.49ms step:470/1480 train_time:69229ms step_avg:150.50ms step:471/1480 train_time:69381ms step_avg:150.50ms step:472/1480 train_time:69534ms step_avg:150.51ms step:473/1480 train_time:69687ms step_avg:150.51ms step:474/1480 train_time:69838ms step_avg:150.51ms step:475/1480 train_time:69991ms step_avg:150.52ms step:476/1480 train_time:70144ms step_avg:150.52ms step:477/1480 train_time:70297ms step_avg:150.53ms step:478/1480 train_time:70451ms step_avg:150.54ms step:479/1480 train_time:70604ms step_avg:150.54ms step:480/1480 train_time:70757ms step_avg:150.55ms step:481/1480 train_time:70909ms step_avg:150.55ms step:482/1480 train_time:71062ms step_avg:150.56ms step:483/1480 train_time:71214ms step_avg:150.56ms step:484/1480 train_time:71367ms step_avg:150.56ms step:485/1480 train_time:71521ms step_avg:150.57ms step:486/1480 train_time:71674ms step_avg:150.58ms step:487/1480 train_time:71828ms step_avg:150.58ms step:488/1480 train_time:71981ms step_avg:150.59ms step:489/1480 train_time:72133ms step_avg:150.59ms step:490/1480 train_time:72286ms step_avg:150.60ms step:491/1480 train_time:72438ms step_avg:150.60ms step:492/1480 train_time:72591ms step_avg:150.60ms step:493/1480 train_time:72744ms step_avg:150.61ms step:494/1480 train_time:72896ms step_avg:150.61ms step:495/1480 train_time:73051ms step_avg:150.62ms step:496/1480 train_time:73204ms step_avg:150.63ms step:497/1480 train_time:73357ms step_avg:150.63ms step:498/1480 train_time:73509ms step_avg:150.63ms step:499/1480 train_time:73661ms step_avg:150.64ms step:500/1480 train_time:73814ms step_avg:150.64ms step:500/1480 val_loss:3.6919 train_time:73884ms step_avg:150.78ms step:501/1480 train_time:73980ms step_avg:150.67ms step:502/1480 train_time:74126ms step_avg:150.66ms step:503/1480 train_time:74281ms step_avg:150.67ms step:504/1480 train_time:74432ms step_avg:150.67ms step:505/1480 train_time:74584ms step_avg:150.67ms step:506/1480 train_time:74736ms step_avg:150.68ms step:507/1480 train_time:74888ms step_avg:150.68ms step:508/1480 train_time:75042ms step_avg:150.69ms step:509/1480 train_time:75195ms step_avg:150.69ms step:510/1480 train_time:75349ms step_avg:150.70ms step:511/1480 train_time:75502ms step_avg:150.70ms step:512/1480 train_time:75655ms step_avg:150.71ms step:513/1480 train_time:75807ms step_avg:150.71ms step:514/1480 train_time:75960ms step_avg:150.71ms step:515/1480 train_time:76114ms step_avg:150.72ms step:516/1480 train_time:76268ms step_avg:150.73ms step:517/1480 train_time:76421ms step_avg:150.73ms step:518/1480 train_time:76574ms step_avg:150.74ms step:519/1480 train_time:76727ms step_avg:150.74ms step:520/1480 train_time:76881ms step_avg:150.75ms step:521/1480 train_time:77032ms step_avg:150.75ms step:522/1480 train_time:77185ms step_avg:150.75ms step:523/1480 train_time:77339ms step_avg:150.76ms step:524/1480 train_time:77493ms step_avg:150.76ms step:525/1480 train_time:77646ms step_avg:150.77ms step:526/1480 train_time:77800ms step_avg:150.77ms step:527/1480 train_time:77952ms step_avg:150.78ms step:528/1480 train_time:78104ms step_avg:150.78ms step:529/1480 train_time:78257ms step_avg:150.79ms step:530/1480 train_time:78411ms step_avg:150.79ms step:531/1480 train_time:78564ms step_avg:150.79ms step:532/1480 train_time:78718ms step_avg:150.80ms step:533/1480 train_time:78870ms step_avg:150.80ms step:534/1480 train_time:79023ms step_avg:150.81ms step:535/1480 train_time:79175ms step_avg:150.81ms step:536/1480 train_time:79327ms step_avg:150.81ms step:537/1480 train_time:79481ms step_avg:150.82ms step:538/1480 train_time:79634ms step_avg:150.82ms step:539/1480 train_time:79788ms step_avg:150.83ms step:540/1480 train_time:79942ms step_avg:150.83ms step:541/1480 train_time:80095ms step_avg:150.84ms step:542/1480 train_time:80247ms step_avg:150.84ms step:543/1480 train_time:80401ms step_avg:150.85ms step:544/1480 train_time:80552ms step_avg:150.85ms step:545/1480 train_time:80705ms step_avg:150.85ms step:546/1480 train_time:80858ms step_avg:150.85ms step:547/1480 train_time:81013ms step_avg:150.86ms step:548/1480 train_time:81165ms step_avg:150.86ms step:549/1480 train_time:81318ms step_avg:150.87ms step:550/1480 train_time:81472ms step_avg:150.87ms step:551/1480 train_time:81626ms step_avg:150.88ms step:552/1480 train_time:81782ms step_avg:150.89ms step:553/1480 train_time:81936ms step_avg:150.90ms step:554/1480 train_time:82091ms step_avg:150.90ms step:555/1480 train_time:82247ms step_avg:150.91ms step:556/1480 train_time:82402ms step_avg:150.92ms step:557/1480 train_time:82555ms step_avg:150.92ms step:558/1480 train_time:82710ms step_avg:150.93ms step:559/1480 train_time:82866ms step_avg:150.94ms step:560/1480 train_time:83021ms step_avg:150.95ms step:561/1480 train_time:83175ms step_avg:150.95ms step:562/1480 train_time:83329ms step_avg:150.96ms step:563/1480 train_time:83483ms step_avg:150.96ms step:564/1480 train_time:83639ms step_avg:150.97ms step:565/1480 train_time:83794ms step_avg:150.98ms step:566/1480 train_time:83949ms step_avg:150.99ms step:567/1480 train_time:84103ms step_avg:150.99ms step:568/1480 train_time:84257ms step_avg:151.00ms step:569/1480 train_time:84431ms step_avg:151.04ms step:570/1480 train_time:84568ms step_avg:151.01ms step:571/1480 train_time:84722ms step_avg:151.02ms step:572/1480 train_time:84877ms step_avg:151.03ms step:573/1480 train_time:85031ms step_avg:151.03ms step:574/1480 train_time:85188ms step_avg:151.04ms step:575/1480 train_time:85344ms step_avg:151.05ms step:576/1480 train_time:85498ms step_avg:151.06ms step:577/1480 train_time:85652ms step_avg:151.06ms step:578/1480 train_time:85807ms step_avg:151.07ms step:579/1480 train_time:85960ms step_avg:151.07ms step:580/1480 train_time:86115ms step_avg:151.08ms step:581/1480 train_time:86270ms step_avg:151.09ms step:582/1480 train_time:86424ms step_avg:151.09ms step:583/1480 train_time:86579ms step_avg:151.10ms step:584/1480 train_time:86733ms step_avg:151.10ms step:585/1480 train_time:86887ms step_avg:151.11ms step:586/1480 train_time:87043ms step_avg:151.12ms step:587/1480 train_time:87198ms step_avg:151.12ms step:588/1480 train_time:87352ms step_avg:151.13ms step:589/1480 train_time:87506ms step_avg:151.13ms step:590/1480 train_time:87661ms step_avg:151.14ms step:591/1480 train_time:87816ms step_avg:151.15ms step:592/1480 train_time:87971ms step_avg:151.15ms step:593/1480 train_time:88125ms step_avg:151.16ms step:594/1480 train_time:88282ms step_avg:151.17ms step:595/1480 train_time:88437ms step_avg:151.17ms step:596/1480 train_time:88594ms step_avg:151.18ms step:597/1480 train_time:88750ms step_avg:151.19ms step:598/1480 train_time:88904ms step_avg:151.20ms step:599/1480 train_time:89058ms step_avg:151.20ms step:600/1480 train_time:89212ms step_avg:151.21ms step:601/1480 train_time:89366ms step_avg:151.21ms step:602/1480 train_time:89522ms step_avg:151.22ms step:603/1480 train_time:89676ms step_avg:151.22ms step:604/1480 train_time:89830ms step_avg:151.23ms step:605/1480 train_time:89985ms step_avg:151.24ms step:606/1480 train_time:90142ms step_avg:151.24ms step:607/1480 train_time:90297ms step_avg:151.25ms step:608/1480 train_time:90453ms step_avg:151.26ms step:609/1480 train_time:90607ms step_avg:151.26ms step:610/1480 train_time:90761ms step_avg:151.27ms step:611/1480 train_time:90916ms step_avg:151.27ms step:612/1480 train_time:91072ms step_avg:151.28ms step:613/1480 train_time:91226ms step_avg:151.29ms step:614/1480 train_time:91382ms step_avg:151.29ms step:615/1480 train_time:91536ms step_avg:151.30ms step:616/1480 train_time:91691ms step_avg:151.30ms step:617/1480 train_time:91845ms step_avg:151.31ms step:618/1480 train_time:91999ms step_avg:151.31ms step:619/1480 train_time:92154ms step_avg:151.32ms step:620/1480 train_time:92309ms step_avg:151.33ms step:621/1480 train_time:92464ms step_avg:151.33ms step:622/1480 train_time:92619ms step_avg:151.34ms step:623/1480 train_time:92776ms step_avg:151.35ms step:624/1480 train_time:92930ms step_avg:151.35ms step:625/1480 train_time:93084ms step_avg:151.36ms step:625/1480 val_loss:3.6059 train_time:93155ms step_avg:151.47ms step:626/1480 train_time:93247ms step_avg:151.37ms step:627/1480 train_time:93401ms step_avg:151.38ms step:628/1480 train_time:93556ms step_avg:151.39ms step:629/1480 train_time:93711ms step_avg:151.39ms step:630/1480 train_time:93865ms step_avg:151.39ms step:631/1480 train_time:94018ms step_avg:151.40ms step:632/1480 train_time:94172ms step_avg:151.40ms step:633/1480 train_time:94328ms step_avg:151.41ms step:634/1480 train_time:94484ms step_avg:151.42ms step:635/1480 train_time:94638ms step_avg:151.42ms step:636/1480 train_time:94792ms step_avg:151.43ms step:637/1480 train_time:94947ms step_avg:151.43ms step:638/1480 train_time:95103ms step_avg:151.44ms step:639/1480 train_time:95257ms step_avg:151.44ms step:640/1480 train_time:95412ms step_avg:151.45ms step:641/1480 train_time:95566ms step_avg:151.45ms step:642/1480 train_time:95720ms step_avg:151.46ms step:643/1480 train_time:95875ms step_avg:151.46ms step:644/1480 train_time:96030ms step_avg:151.47ms step:645/1480 train_time:96185ms step_avg:151.47ms step:646/1480 train_time:96339ms step_avg:151.48ms step:647/1480 train_time:96493ms step_avg:151.48ms step:648/1480 train_time:96648ms step_avg:151.49ms step:649/1480 train_time:96803ms step_avg:151.49ms step:650/1480 train_time:96959ms step_avg:151.50ms step:651/1480 train_time:97113ms step_avg:151.50ms step:652/1480 train_time:97269ms step_avg:151.51ms step:653/1480 train_time:97423ms step_avg:151.51ms step:654/1480 train_time:97578ms step_avg:151.52ms step:655/1480 train_time:97732ms step_avg:151.52ms step:656/1480 train_time:97888ms step_avg:151.53ms step:657/1480 train_time:98043ms step_avg:151.53ms step:658/1480 train_time:98198ms step_avg:151.54ms step:659/1480 train_time:98353ms step_avg:151.55ms step:660/1480 train_time:98509ms step_avg:151.55ms step:661/1480 train_time:98666ms step_avg:151.56ms step:662/1480 train_time:98822ms step_avg:151.57ms step:663/1480 train_time:98977ms step_avg:151.57ms step:664/1480 train_time:99133ms step_avg:151.58ms step:665/1480 train_time:99290ms step_avg:151.59ms step:666/1480 train_time:99446ms step_avg:151.59ms step:667/1480 train_time:99603ms step_avg:151.60ms step:668/1480 train_time:99760ms step_avg:151.61ms step:669/1480 train_time:99919ms step_avg:151.62ms step:670/1480 train_time:100075ms step_avg:151.63ms step:671/1480 train_time:100231ms step_avg:151.63ms step:672/1480 train_time:100388ms step_avg:151.64ms step:673/1480 train_time:100543ms step_avg:151.65ms step:674/1480 train_time:100700ms step_avg:151.66ms step:675/1480 train_time:100858ms step_avg:151.67ms step:676/1480 train_time:101015ms step_avg:151.67ms step:677/1480 train_time:101171ms step_avg:151.68ms step:678/1480 train_time:101328ms step_avg:151.69ms step:679/1480 train_time:101484ms step_avg:151.69ms step:680/1480 train_time:101641ms step_avg:151.70ms step:681/1480 train_time:101795ms step_avg:151.71ms step:682/1480 train_time:101952ms step_avg:151.71ms step:683/1480 train_time:102109ms step_avg:151.72ms step:684/1480 train_time:102265ms step_avg:151.73ms step:685/1480 train_time:102422ms step_avg:151.74ms step:686/1480 train_time:102578ms step_avg:151.74ms step:687/1480 train_time:102734ms step_avg:151.75ms step:688/1480 train_time:102891ms step_avg:151.76ms step:689/1480 train_time:103048ms step_avg:151.76ms step:690/1480 train_time:103206ms step_avg:151.77ms step:691/1480 train_time:103362ms step_avg:151.78ms step:692/1480 train_time:103518ms step_avg:151.79ms step:693/1480 train_time:103675ms step_avg:151.79ms step:694/1480 train_time:103831ms step_avg:151.80ms step:695/1480 train_time:103987ms step_avg:151.81ms step:696/1480 train_time:104143ms step_avg:151.81ms step:697/1480 train_time:104301ms step_avg:151.82ms step:698/1480 train_time:104457ms step_avg:151.83ms step:699/1480 train_time:104613ms step_avg:151.83ms step:700/1480 train_time:104770ms step_avg:151.84ms step:701/1480 train_time:104925ms step_avg:151.85ms step:702/1480 train_time:105083ms step_avg:151.85ms step:703/1480 train_time:105239ms step_avg:151.86ms step:704/1480 train_time:105394ms step_avg:151.87ms step:705/1480 train_time:105551ms step_avg:151.87ms step:706/1480 train_time:105710ms step_avg:151.88ms step:707/1480 train_time:105867ms step_avg:151.89ms step:708/1480 train_time:106022ms step_avg:151.89ms step:709/1480 train_time:106178ms step_avg:151.90ms step:710/1480 train_time:106334ms step_avg:151.91ms step:711/1480 train_time:106491ms step_avg:151.91ms step:712/1480 train_time:106648ms step_avg:151.92ms step:713/1480 train_time:106806ms step_avg:151.93ms step:714/1480 train_time:106962ms step_avg:151.94ms step:715/1480 train_time:107117ms step_avg:151.94ms step:716/1480 train_time:107272ms step_avg:151.94ms step:717/1480 train_time:107429ms step_avg:151.95ms step:718/1480 train_time:107585ms step_avg:151.96ms step:719/1480 train_time:107741ms step_avg:151.96ms step:720/1480 train_time:107900ms step_avg:151.97ms step:721/1480 train_time:108058ms step_avg:151.98ms step:722/1480 train_time:108214ms step_avg:151.99ms step:723/1480 train_time:108370ms step_avg:151.99ms step:724/1480 train_time:108527ms step_avg:152.00ms step:725/1480 train_time:108683ms step_avg:152.00ms step:726/1480 train_time:108840ms step_avg:152.01ms step:727/1480 train_time:108996ms step_avg:152.02ms step:728/1480 train_time:109152ms step_avg:152.02ms step:729/1480 train_time:109309ms step_avg:152.03ms step:730/1480 train_time:109467ms step_avg:152.04ms step:731/1480 train_time:109623ms step_avg:152.04ms step:732/1480 train_time:109779ms step_avg:152.05ms step:733/1480 train_time:109936ms step_avg:152.06ms step:734/1480 train_time:110093ms step_avg:152.06ms step:735/1480 train_time:110249ms step_avg:152.07ms step:736/1480 train_time:110405ms step_avg:152.07ms step:737/1480 train_time:110561ms step_avg:152.08ms step:738/1480 train_time:110716ms step_avg:152.08ms step:739/1480 train_time:110871ms step_avg:152.09ms step:740/1480 train_time:111029ms step_avg:152.09ms step:741/1480 train_time:111187ms step_avg:152.10ms step:742/1480 train_time:111342ms step_avg:152.11ms step:743/1480 train_time:111498ms step_avg:152.11ms step:744/1480 train_time:111653ms step_avg:152.12ms step:745/1480 train_time:111811ms step_avg:152.12ms step:746/1480 train_time:111966ms step_avg:152.13ms step:747/1480 train_time:112122ms step_avg:152.13ms step:748/1480 train_time:112282ms step_avg:152.14ms step:749/1480 train_time:112439ms step_avg:152.15ms step:750/1480 train_time:112595ms step_avg:152.16ms step:750/1480 val_loss:3.5515 train_time:112666ms step_avg:152.25ms step:751/1480 train_time:112758ms step_avg:152.17ms step:752/1480 train_time:112915ms step_avg:152.18ms step:753/1480 train_time:113071ms step_avg:152.18ms step:754/1480 train_time:113226ms step_avg:152.19ms step:755/1480 train_time:113383ms step_avg:152.19ms step:756/1480 train_time:113539ms step_avg:152.20ms step:757/1480 train_time:113697ms step_avg:152.21ms step:758/1480 train_time:113854ms step_avg:152.21ms step:759/1480 train_time:114027ms step_avg:152.24ms step:760/1480 train_time:114169ms step_avg:152.22ms step:761/1480 train_time:114325ms step_avg:152.23ms step:762/1480 train_time:114481ms step_avg:152.24ms step:763/1480 train_time:114638ms step_avg:152.24ms step:764/1480 train_time:114795ms step_avg:152.25ms step:765/1480 train_time:114952ms step_avg:152.25ms step:766/1480 train_time:115109ms step_avg:152.26ms step:767/1480 train_time:115266ms step_avg:152.27ms step:768/1480 train_time:115422ms step_avg:152.27ms step:769/1480 train_time:115581ms step_avg:152.28ms step:770/1480 train_time:115739ms step_avg:152.29ms step:771/1480 train_time:115896ms step_avg:152.29ms step:772/1480 train_time:116054ms step_avg:152.30ms step:773/1480 train_time:116212ms step_avg:152.31ms step:774/1480 train_time:116370ms step_avg:152.32ms step:775/1480 train_time:116528ms step_avg:152.32ms step:776/1480 train_time:116686ms step_avg:152.33ms step:777/1480 train_time:116844ms step_avg:152.34ms step:778/1480 train_time:117002ms step_avg:152.35ms step:779/1480 train_time:117160ms step_avg:152.35ms step:780/1480 train_time:117319ms step_avg:152.36ms step:781/1480 train_time:117478ms step_avg:152.37ms step:782/1480 train_time:117638ms step_avg:152.38ms step:783/1480 train_time:117795ms step_avg:152.39ms step:784/1480 train_time:117955ms step_avg:152.40ms step:785/1480 train_time:118114ms step_avg:152.40ms step:786/1480 train_time:118271ms step_avg:152.41ms step:787/1480 train_time:118429ms step_avg:152.42ms step:788/1480 train_time:118586ms step_avg:152.42ms step:789/1480 train_time:118743ms step_avg:152.43ms step:790/1480 train_time:118900ms step_avg:152.44ms step:791/1480 train_time:119061ms step_avg:152.45ms step:792/1480 train_time:119219ms step_avg:152.45ms step:793/1480 train_time:119377ms step_avg:152.46ms step:794/1480 train_time:119535ms step_avg:152.47ms step:795/1480 train_time:119695ms step_avg:152.48ms step:796/1480 train_time:119856ms step_avg:152.49ms step:797/1480 train_time:120017ms step_avg:152.50ms step:798/1480 train_time:120176ms step_avg:152.51ms step:799/1480 train_time:120336ms step_avg:152.52ms step:800/1480 train_time:120495ms step_avg:152.52ms step:801/1480 train_time:120652ms step_avg:152.53ms step:802/1480 train_time:120813ms step_avg:152.54ms step:803/1480 train_time:120971ms step_avg:152.55ms step:804/1480 train_time:121127ms step_avg:152.55ms step:805/1480 train_time:121286ms step_avg:152.56ms step:806/1480 train_time:121443ms step_avg:152.57ms step:807/1480 train_time:121600ms step_avg:152.57ms step:808/1480 train_time:121760ms step_avg:152.58ms step:809/1480 train_time:121916ms step_avg:152.59ms step:810/1480 train_time:122073ms step_avg:152.59ms step:811/1480 train_time:122231ms step_avg:152.60ms step:812/1480 train_time:122388ms step_avg:152.60ms step:813/1480 train_time:122545ms step_avg:152.61ms step:814/1480 train_time:122702ms step_avg:152.61ms step:815/1480 train_time:122859ms step_avg:152.62ms step:816/1480 train_time:123018ms step_avg:152.63ms step:817/1480 train_time:123177ms step_avg:152.64ms step:818/1480 train_time:123335ms step_avg:152.64ms step:819/1480 train_time:123491ms step_avg:152.65ms step:820/1480 train_time:123650ms step_avg:152.65ms step:821/1480 train_time:123808ms step_avg:152.66ms step:822/1480 train_time:123966ms step_avg:152.67ms step:823/1480 train_time:124123ms step_avg:152.67ms step:824/1480 train_time:124280ms step_avg:152.68ms step:825/1480 train_time:124440ms step_avg:152.69ms step:826/1480 train_time:124599ms step_avg:152.70ms step:827/1480 train_time:124758ms step_avg:152.70ms step:828/1480 train_time:124917ms step_avg:152.71ms step:829/1480 train_time:125077ms step_avg:152.72ms step:830/1480 train_time:125238ms step_avg:152.73ms step:831/1480 train_time:125396ms step_avg:152.74ms step:832/1480 train_time:125555ms step_avg:152.74ms step:833/1480 train_time:125713ms step_avg:152.75ms step:834/1480 train_time:125874ms step_avg:152.76ms step:835/1480 train_time:126031ms step_avg:152.76ms step:836/1480 train_time:126189ms step_avg:152.77ms step:837/1480 train_time:126346ms step_avg:152.78ms step:838/1480 train_time:126503ms step_avg:152.78ms step:839/1480 train_time:126661ms step_avg:152.79ms step:840/1480 train_time:126818ms step_avg:152.79ms step:841/1480 train_time:126976ms step_avg:152.80ms step:842/1480 train_time:127136ms step_avg:152.81ms step:843/1480 train_time:127294ms step_avg:152.81ms step:844/1480 train_time:127450ms step_avg:152.82ms step:845/1480 train_time:127607ms step_avg:152.82ms step:846/1480 train_time:127768ms step_avg:152.83ms step:847/1480 train_time:127926ms step_avg:152.84ms step:848/1480 train_time:128084ms step_avg:152.84ms step:849/1480 train_time:128242ms step_avg:152.85ms step:850/1480 train_time:128400ms step_avg:152.86ms step:851/1480 train_time:128558ms step_avg:152.86ms step:852/1480 train_time:128717ms step_avg:152.87ms step:853/1480 train_time:128874ms step_avg:152.88ms step:854/1480 train_time:129034ms step_avg:152.88ms step:855/1480 train_time:129191ms step_avg:152.89ms step:856/1480 train_time:129347ms step_avg:152.89ms step:857/1480 train_time:129504ms step_avg:152.90ms step:858/1480 train_time:129664ms step_avg:152.91ms step:859/1480 train_time:129822ms step_avg:152.91ms step:860/1480 train_time:129979ms step_avg:152.92ms step:861/1480 train_time:130138ms step_avg:152.92ms step:862/1480 train_time:130300ms step_avg:152.93ms step:863/1480 train_time:130460ms step_avg:152.94ms step:864/1480 train_time:130618ms step_avg:152.95ms step:865/1480 train_time:130776ms step_avg:152.95ms step:866/1480 train_time:130935ms step_avg:152.96ms step:867/1480 train_time:131094ms step_avg:152.97ms step:868/1480 train_time:131252ms step_avg:152.97ms step:869/1480 train_time:131410ms step_avg:152.98ms step:870/1480 train_time:131569ms step_avg:152.99ms step:871/1480 train_time:131725ms step_avg:152.99ms step:872/1480 train_time:131883ms step_avg:153.00ms step:873/1480 train_time:132040ms step_avg:153.00ms step:874/1480 train_time:132200ms step_avg:153.01ms step:875/1480 train_time:132359ms step_avg:153.02ms step:875/1480 val_loss:3.5055 train_time:132431ms step_avg:153.10ms step:876/1480 train_time:132522ms step_avg:153.03ms step:877/1480 train_time:132678ms step_avg:153.03ms step:878/1480 train_time:132837ms step_avg:153.04ms step:879/1480 train_time:132995ms step_avg:153.04ms step:880/1480 train_time:133152ms step_avg:153.05ms step:881/1480 train_time:133310ms step_avg:153.05ms step:882/1480 train_time:133470ms step_avg:153.06ms step:883/1480 train_time:133628ms step_avg:153.07ms step:884/1480 train_time:133787ms step_avg:153.07ms step:885/1480 train_time:133947ms step_avg:153.08ms step:886/1480 train_time:134108ms step_avg:153.09ms step:887/1480 train_time:134267ms step_avg:153.10ms step:888/1480 train_time:134431ms step_avg:153.11ms step:889/1480 train_time:134591ms step_avg:153.12ms step:890/1480 train_time:134748ms step_avg:153.12ms step:891/1480 train_time:134906ms step_avg:153.13ms step:892/1480 train_time:135066ms step_avg:153.14ms step:893/1480 train_time:135224ms step_avg:153.14ms step:894/1480 train_time:135384ms step_avg:153.15ms step:895/1480 train_time:135547ms step_avg:153.16ms step:896/1480 train_time:135706ms step_avg:153.17ms step:897/1480 train_time:135865ms step_avg:153.17ms step:898/1480 train_time:136026ms step_avg:153.18ms step:899/1480 train_time:136185ms step_avg:153.19ms step:900/1480 train_time:136344ms step_avg:153.20ms step:901/1480 train_time:136504ms step_avg:153.20ms step:902/1480 train_time:136662ms step_avg:153.21ms step:903/1480 train_time:136826ms step_avg:153.22ms step:904/1480 train_time:136985ms step_avg:153.23ms step:905/1480 train_time:137143ms step_avg:153.23ms step:906/1480 train_time:137304ms step_avg:153.24ms step:907/1480 train_time:137467ms step_avg:153.25ms step:908/1480 train_time:137625ms step_avg:153.26ms step:909/1480 train_time:137785ms step_avg:153.27ms step:910/1480 train_time:137950ms step_avg:153.28ms step:911/1480 train_time:138109ms step_avg:153.28ms step:912/1480 train_time:138268ms step_avg:153.29ms step:913/1480 train_time:138428ms step_avg:153.30ms step:914/1480 train_time:138588ms step_avg:153.30ms step:915/1480 train_time:138751ms step_avg:153.32ms step:916/1480 train_time:138910ms step_avg:153.32ms step:917/1480 train_time:139069ms step_avg:153.33ms step:918/1480 train_time:139229ms step_avg:153.34ms step:919/1480 train_time:139390ms step_avg:153.34ms step:920/1480 train_time:139549ms step_avg:153.35ms step:921/1480 train_time:139708ms step_avg:153.36ms step:922/1480 train_time:139869ms step_avg:153.37ms step:923/1480 train_time:140027ms step_avg:153.37ms step:924/1480 train_time:140185ms step_avg:153.37ms step:925/1480 train_time:140345ms step_avg:153.38ms step:926/1480 train_time:140504ms step_avg:153.39ms step:927/1480 train_time:140661ms step_avg:153.39ms step:928/1480 train_time:140822ms step_avg:153.40ms step:929/1480 train_time:140983ms step_avg:153.41ms step:930/1480 train_time:141143ms step_avg:153.42ms step:931/1480 train_time:141303ms step_avg:153.42ms step:932/1480 train_time:141463ms step_avg:153.43ms step:933/1480 train_time:141624ms step_avg:153.44ms step:934/1480 train_time:141783ms step_avg:153.44ms step:935/1480 train_time:141946ms step_avg:153.46ms step:936/1480 train_time:142105ms step_avg:153.46ms step:937/1480 train_time:142267ms step_avg:153.47ms step:938/1480 train_time:142425ms step_avg:153.48ms step:939/1480 train_time:142586ms step_avg:153.48ms step:940/1480 train_time:142747ms step_avg:153.49ms step:941/1480 train_time:142905ms step_avg:153.50ms step:942/1480 train_time:143063ms step_avg:153.50ms step:943/1480 train_time:143224ms step_avg:153.51ms step:944/1480 train_time:143386ms step_avg:153.52ms step:945/1480 train_time:143546ms step_avg:153.53ms step:946/1480 train_time:143708ms step_avg:153.53ms step:947/1480 train_time:143868ms step_avg:153.54ms step:948/1480 train_time:144028ms step_avg:153.55ms step:949/1480 train_time:144204ms step_avg:153.57ms step:950/1480 train_time:144346ms step_avg:153.56ms step:951/1480 train_time:144508ms step_avg:153.57ms step:952/1480 train_time:144666ms step_avg:153.57ms step:953/1480 train_time:144827ms step_avg:153.58ms step:954/1480 train_time:144988ms step_avg:153.59ms step:955/1480 train_time:145147ms step_avg:153.59ms step:956/1480 train_time:145306ms step_avg:153.60ms step:957/1480 train_time:145467ms step_avg:153.61ms step:958/1480 train_time:145630ms step_avg:153.62ms step:959/1480 train_time:145788ms step_avg:153.62ms step:960/1480 train_time:145949ms step_avg:153.63ms step:961/1480 train_time:146108ms step_avg:153.64ms step:962/1480 train_time:146265ms step_avg:153.64ms step:963/1480 train_time:146426ms step_avg:153.65ms step:964/1480 train_time:146587ms step_avg:153.65ms step:965/1480 train_time:146746ms step_avg:153.66ms step:966/1480 train_time:146904ms step_avg:153.67ms step:967/1480 train_time:147062ms step_avg:153.67ms step:968/1480 train_time:147223ms step_avg:153.68ms step:969/1480 train_time:147383ms step_avg:153.68ms step:970/1480 train_time:147542ms step_avg:153.69ms step:971/1480 train_time:147702ms step_avg:153.70ms step:972/1480 train_time:147860ms step_avg:153.70ms step:973/1480 train_time:148018ms step_avg:153.71ms step:974/1480 train_time:148180ms step_avg:153.71ms step:975/1480 train_time:148341ms step_avg:153.72ms step:976/1480 train_time:148502ms step_avg:153.73ms step:977/1480 train_time:148661ms step_avg:153.73ms step:978/1480 train_time:148821ms step_avg:153.74ms step:979/1480 train_time:148982ms step_avg:153.75ms step:980/1480 train_time:149142ms step_avg:153.75ms step:981/1480 train_time:149302ms step_avg:153.76ms step:982/1480 train_time:149461ms step_avg:153.77ms step:983/1480 train_time:149623ms step_avg:153.77ms step:984/1480 train_time:149782ms step_avg:153.78ms step:985/1480 train_time:149944ms step_avg:153.79ms step:986/1480 train_time:150104ms step_avg:153.80ms step:987/1480 train_time:150262ms step_avg:153.80ms step:988/1480 train_time:150424ms step_avg:153.81ms step:989/1480 train_time:150583ms step_avg:153.81ms step:990/1480 train_time:150747ms step_avg:153.82ms step:991/1480 train_time:150908ms step_avg:153.83ms step:992/1480 train_time:151071ms step_avg:153.84ms step:993/1480 train_time:151239ms step_avg:153.85ms step:994/1480 train_time:151399ms step_avg:153.86ms step:995/1480 train_time:151557ms step_avg:153.87ms step:996/1480 train_time:151715ms step_avg:153.87ms step:997/1480 train_time:151875ms step_avg:153.88ms step:998/1480 train_time:152035ms step_avg:153.88ms step:999/1480 train_time:152195ms step_avg:153.89ms step:1000/1480 train_time:152357ms step_avg:153.90ms step:1000/1480 val_loss:3.4402 train_time:152430ms step_avg:153.97ms step:1001/1480 train_time:152521ms step_avg:153.91ms step:1002/1480 train_time:152679ms step_avg:153.91ms step:1003/1480 train_time:152841ms step_avg:153.92ms step:1004/1480 train_time:153002ms step_avg:153.93ms step:1005/1480 train_time:153162ms step_avg:153.93ms step:1006/1480 train_time:153323ms step_avg:153.94ms step:1007/1480 train_time:153483ms step_avg:153.95ms step:1008/1480 train_time:153644ms step_avg:153.95ms step:1009/1480 train_time:153810ms step_avg:153.96ms step:1010/1480 train_time:153970ms step_avg:153.97ms step:1011/1480 train_time:154129ms step_avg:153.97ms step:1012/1480 train_time:154288ms step_avg:153.98ms step:1013/1480 train_time:154449ms step_avg:153.99ms step:1014/1480 train_time:154609ms step_avg:153.99ms step:1015/1480 train_time:154772ms step_avg:154.00ms step:1016/1480 train_time:154933ms step_avg:154.01ms step:1017/1480 train_time:155096ms step_avg:154.02ms step:1018/1480 train_time:155258ms step_avg:154.03ms step:1019/1480 train_time:155419ms step_avg:154.03ms step:1020/1480 train_time:155579ms step_avg:154.04ms step:1021/1480 train_time:155738ms step_avg:154.04ms step:1022/1480 train_time:155898ms step_avg:154.05ms step:1023/1480 train_time:156059ms step_avg:154.06ms step:1024/1480 train_time:156218ms step_avg:154.06ms step:1025/1480 train_time:156380ms step_avg:154.07ms step:1026/1480 train_time:156539ms step_avg:154.07ms step:1027/1480 train_time:156699ms step_avg:154.08ms step:1028/1480 train_time:156861ms step_avg:154.09ms step:1029/1480 train_time:157024ms step_avg:154.10ms step:1030/1480 train_time:157187ms step_avg:154.10ms step:1031/1480 train_time:157345ms step_avg:154.11ms step:1032/1480 train_time:157508ms step_avg:154.12ms step:1033/1480 train_time:157668ms step_avg:154.12ms step:1034/1480 train_time:157828ms step_avg:154.13ms step:1035/1480 train_time:157988ms step_avg:154.13ms step:1036/1480 train_time:158148ms step_avg:154.14ms step:1037/1480 train_time:158310ms step_avg:154.15ms step:1038/1480 train_time:158470ms step_avg:154.15ms step:1039/1480 train_time:158632ms step_avg:154.16ms step:1040/1480 train_time:158793ms step_avg:154.17ms step:1041/1480 train_time:158953ms step_avg:154.17ms step:1042/1480 train_time:159113ms step_avg:154.18ms step:1043/1480 train_time:159274ms step_avg:154.19ms step:1044/1480 train_time:159434ms step_avg:154.19ms step:1045/1480 train_time:159597ms step_avg:154.20ms step:1046/1480 train_time:159756ms step_avg:154.21ms step:1047/1480 train_time:159917ms step_avg:154.21ms step:1048/1480 train_time:160077ms step_avg:154.22ms step:1049/1480 train_time:160237ms step_avg:154.22ms step:1050/1480 train_time:160400ms step_avg:154.23ms step:1051/1480 train_time:160563ms step_avg:154.24ms step:1052/1480 train_time:160722ms step_avg:154.24ms step:1053/1480 train_time:160882ms step_avg:154.25ms step:1054/1480 train_time:161042ms step_avg:154.26ms step:1055/1480 train_time:161202ms step_avg:154.26ms step:1056/1480 train_time:161360ms step_avg:154.26ms step:1057/1480 train_time:161520ms step_avg:154.27ms step:1058/1480 train_time:161681ms step_avg:154.28ms step:1059/1480 train_time:161844ms step_avg:154.28ms step:1060/1480 train_time:162005ms step_avg:154.29ms step:1061/1480 train_time:162163ms step_avg:154.29ms step:1062/1480 train_time:162323ms step_avg:154.30ms step:1063/1480 train_time:162483ms step_avg:154.31ms step:1064/1480 train_time:162641ms step_avg:154.31ms step:1065/1480 train_time:162802ms step_avg:154.32ms step:1066/1480 train_time:162964ms step_avg:154.32ms step:1067/1480 train_time:163129ms step_avg:154.33ms step:1068/1480 train_time:163289ms step_avg:154.34ms step:1069/1480 train_time:163454ms step_avg:154.35ms step:1070/1480 train_time:163614ms step_avg:154.35ms step:1071/1480 train_time:163778ms step_avg:154.36ms step:1072/1480 train_time:163935ms step_avg:154.36ms step:1073/1480 train_time:164095ms step_avg:154.37ms step:1074/1480 train_time:164254ms step_avg:154.37ms step:1075/1480 train_time:164416ms step_avg:154.38ms step:1076/1480 train_time:164576ms step_avg:154.39ms step:1077/1480 train_time:164735ms step_avg:154.39ms step:1078/1480 train_time:164901ms step_avg:154.40ms step:1079/1480 train_time:165064ms step_avg:154.41ms step:1080/1480 train_time:165225ms step_avg:154.42ms step:1081/1480 train_time:165384ms step_avg:154.42ms step:1082/1480 train_time:165544ms step_avg:154.43ms step:1083/1480 train_time:165704ms step_avg:154.43ms step:1084/1480 train_time:165865ms step_avg:154.44ms step:1085/1480 train_time:166026ms step_avg:154.44ms step:1086/1480 train_time:166186ms step_avg:154.45ms step:1087/1480 train_time:166345ms step_avg:154.45ms step:1088/1480 train_time:166505ms step_avg:154.46ms step:1089/1480 train_time:166671ms step_avg:154.47ms step:1090/1480 train_time:166834ms step_avg:154.48ms step:1091/1480 train_time:166996ms step_avg:154.48ms step:1092/1480 train_time:167159ms step_avg:154.49ms step:1093/1480 train_time:167320ms step_avg:154.50ms step:1094/1480 train_time:167480ms step_avg:154.50ms step:1095/1480 train_time:167637ms step_avg:154.50ms step:1096/1480 train_time:167799ms step_avg:154.51ms step:1097/1480 train_time:167960ms step_avg:154.52ms step:1098/1480 train_time:168123ms step_avg:154.52ms step:1099/1480 train_time:168284ms step_avg:154.53ms step:1100/1480 train_time:168450ms step_avg:154.54ms step:1101/1480 train_time:168613ms step_avg:154.55ms step:1102/1480 train_time:168776ms step_avg:154.56ms step:1103/1480 train_time:168941ms step_avg:154.57ms step:1104/1480 train_time:169101ms step_avg:154.57ms step:1105/1480 train_time:169264ms step_avg:154.58ms step:1106/1480 train_time:169425ms step_avg:154.58ms step:1107/1480 train_time:169587ms step_avg:154.59ms step:1108/1480 train_time:169748ms step_avg:154.60ms step:1109/1480 train_time:169907ms step_avg:154.60ms step:1110/1480 train_time:170069ms step_avg:154.61ms step:1111/1480 train_time:170232ms step_avg:154.62ms step:1112/1480 train_time:170396ms step_avg:154.62ms step:1113/1480 train_time:170566ms step_avg:154.64ms step:1114/1480 train_time:170728ms step_avg:154.64ms step:1115/1480 train_time:170890ms step_avg:154.65ms step:1116/1480 train_time:171050ms step_avg:154.66ms step:1117/1480 train_time:171215ms step_avg:154.67ms step:1118/1480 train_time:171381ms step_avg:154.68ms step:1119/1480 train_time:171539ms step_avg:154.68ms step:1120/1480 train_time:171700ms step_avg:154.68ms step:1121/1480 train_time:171861ms step_avg:154.69ms step:1122/1480 train_time:172021ms step_avg:154.69ms step:1123/1480 train_time:172182ms step_avg:154.70ms step:1124/1480 train_time:172343ms step_avg:154.71ms step:1125/1480 train_time:172503ms step_avg:154.71ms step:1125/1480 val_loss:3.3848 train_time:172578ms step_avg:154.78ms step:1126/1480 train_time:172669ms step_avg:154.72ms step:1127/1480 train_time:172831ms step_avg:154.73ms step:1128/1480 train_time:172991ms step_avg:154.73ms step:1129/1480 train_time:173154ms step_avg:154.74ms step:1130/1480 train_time:173315ms step_avg:154.75ms step:1131/1480 train_time:173482ms step_avg:154.76ms step:1132/1480 train_time:173642ms step_avg:154.76ms step:1133/1480 train_time:173805ms step_avg:154.77ms step:1134/1480 train_time:173968ms step_avg:154.78ms step:1135/1480 train_time:174129ms step_avg:154.78ms step:1136/1480 train_time:174291ms step_avg:154.79ms step:1137/1480 train_time:174453ms step_avg:154.79ms step:1138/1480 train_time:174619ms step_avg:154.80ms step:1139/1480 train_time:174799ms step_avg:154.83ms step:1140/1480 train_time:174943ms step_avg:154.82ms step:1141/1480 train_time:175109ms step_avg:154.83ms step:1142/1480 train_time:175270ms step_avg:154.83ms step:1143/1480 train_time:175434ms step_avg:154.84ms step:1144/1480 train_time:175595ms step_avg:154.85ms step:1145/1480 train_time:175755ms step_avg:154.85ms step:1146/1480 train_time:175918ms step_avg:154.86ms step:1147/1480 train_time:176081ms step_avg:154.86ms step:1148/1480 train_time:176242ms step_avg:154.87ms step:1149/1480 train_time:176403ms step_avg:154.88ms step:1150/1480 train_time:176563ms step_avg:154.88ms step:1151/1480 train_time:176727ms step_avg:154.89ms step:1152/1480 train_time:176890ms step_avg:154.89ms step:1153/1480 train_time:177054ms step_avg:154.90ms step:1154/1480 train_time:177216ms step_avg:154.91ms step:1155/1480 train_time:177378ms step_avg:154.92ms step:1156/1480 train_time:177549ms step_avg:154.93ms step:1157/1480 train_time:177712ms step_avg:154.94ms step:1158/1480 train_time:177872ms step_avg:154.94ms step:1159/1480 train_time:178033ms step_avg:154.95ms step:1160/1480 train_time:178194ms step_avg:154.95ms step:1161/1480 train_time:178355ms step_avg:154.96ms step:1162/1480 train_time:178521ms step_avg:154.97ms step:1163/1480 train_time:178684ms step_avg:154.97ms step:1164/1480 train_time:178845ms step_avg:154.98ms step:1165/1480 train_time:179004ms step_avg:154.98ms step:1166/1480 train_time:179165ms step_avg:154.99ms step:1167/1480 train_time:179325ms step_avg:154.99ms step:1168/1480 train_time:179486ms step_avg:155.00ms step:1169/1480 train_time:179648ms step_avg:155.00ms step:1170/1480 train_time:179811ms step_avg:155.01ms step:1171/1480 train_time:179972ms step_avg:155.01ms step:1172/1480 train_time:180133ms step_avg:155.02ms step:1173/1480 train_time:180296ms step_avg:155.03ms step:1174/1480 train_time:180466ms step_avg:155.04ms step:1175/1480 train_time:180628ms step_avg:155.05ms step:1176/1480 train_time:180791ms step_avg:155.05ms step:1177/1480 train_time:180959ms step_avg:155.06ms step:1178/1480 train_time:181120ms step_avg:155.07ms step:1179/1480 train_time:181282ms step_avg:155.07ms step:1180/1480 train_time:181450ms step_avg:155.09ms step:1181/1480 train_time:181612ms step_avg:155.09ms step:1182/1480 train_time:181773ms step_avg:155.10ms step:1183/1480 train_time:181935ms step_avg:155.10ms step:1184/1480 train_time:182097ms step_avg:155.11ms step:1185/1480 train_time:182261ms step_avg:155.12ms step:1186/1480 train_time:182424ms step_avg:155.12ms step:1187/1480 train_time:182593ms step_avg:155.13ms step:1188/1480 train_time:182752ms step_avg:155.14ms step:1189/1480 train_time:182915ms step_avg:155.14ms step:1190/1480 train_time:183078ms step_avg:155.15ms step:1191/1480 train_time:183242ms step_avg:155.16ms step:1192/1480 train_time:183404ms step_avg:155.16ms step:1193/1480 train_time:183564ms step_avg:155.17ms step:1194/1480 train_time:183724ms step_avg:155.17ms step:1195/1480 train_time:183886ms step_avg:155.18ms step:1196/1480 train_time:184057ms step_avg:155.19ms step:1197/1480 train_time:184219ms step_avg:155.20ms step:1198/1480 train_time:184387ms step_avg:155.21ms step:1199/1480 train_time:184548ms step_avg:155.21ms step:1200/1480 train_time:184710ms step_avg:155.22ms step:1201/1480 train_time:184870ms step_avg:155.22ms step:1202/1480 train_time:185041ms step_avg:155.24ms step:1203/1480 train_time:185207ms step_avg:155.24ms step:1204/1480 train_time:185371ms step_avg:155.25ms step:1205/1480 train_time:185532ms step_avg:155.26ms step:1206/1480 train_time:185693ms step_avg:155.26ms step:1207/1480 train_time:185854ms step_avg:155.27ms step:1208/1480 train_time:186016ms step_avg:155.27ms step:1209/1480 train_time:186180ms step_avg:155.28ms step:1210/1480 train_time:186347ms step_avg:155.29ms step:1211/1480 train_time:186510ms step_avg:155.30ms step:1212/1480 train_time:186673ms step_avg:155.30ms step:1213/1480 train_time:186838ms step_avg:155.31ms step:1214/1480 train_time:187006ms step_avg:155.32ms step:1215/1480 train_time:187168ms step_avg:155.33ms step:1216/1480 train_time:187329ms step_avg:155.33ms step:1217/1480 train_time:187491ms step_avg:155.34ms step:1218/1480 train_time:187651ms step_avg:155.34ms step:1219/1480 train_time:187820ms step_avg:155.35ms step:1220/1480 train_time:187982ms step_avg:155.36ms step:1221/1480 train_time:188145ms step_avg:155.36ms step:1222/1480 train_time:188306ms step_avg:155.37ms step:1223/1480 train_time:188469ms step_avg:155.37ms step:1224/1480 train_time:188636ms step_avg:155.38ms step:1225/1480 train_time:188801ms step_avg:155.39ms step:1226/1480 train_time:188966ms step_avg:155.40ms step:1227/1480 train_time:189129ms step_avg:155.41ms step:1228/1480 train_time:189290ms step_avg:155.41ms step:1229/1480 train_time:189453ms step_avg:155.42ms step:1230/1480 train_time:189625ms step_avg:155.43ms step:1231/1480 train_time:189790ms step_avg:155.44ms step:1232/1480 train_time:189956ms step_avg:155.45ms step:1233/1480 train_time:190118ms step_avg:155.45ms step:1234/1480 train_time:190280ms step_avg:155.46ms step:1235/1480 train_time:190444ms step_avg:155.46ms step:1236/1480 train_time:190606ms step_avg:155.47ms step:1237/1480 train_time:190767ms step_avg:155.47ms step:1238/1480 train_time:190940ms step_avg:155.49ms step:1239/1480 train_time:191103ms step_avg:155.49ms step:1240/1480 train_time:191266ms step_avg:155.50ms step:1241/1480 train_time:191430ms step_avg:155.51ms step:1242/1480 train_time:191591ms step_avg:155.51ms step:1243/1480 train_time:191754ms step_avg:155.52ms step:1244/1480 train_time:191916ms step_avg:155.52ms step:1245/1480 train_time:192080ms step_avg:155.53ms step:1246/1480 train_time:192244ms step_avg:155.54ms step:1247/1480 train_time:192405ms step_avg:155.54ms step:1248/1480 train_time:192565ms step_avg:155.55ms step:1249/1480 train_time:192727ms step_avg:155.55ms step:1250/1480 train_time:192887ms step_avg:155.55ms step:1250/1480 val_loss:3.3347 train_time:192963ms step_avg:155.62ms step:1251/1480 train_time:193056ms step_avg:155.57ms step:1252/1480 train_time:193219ms step_avg:155.57ms step:1253/1480 train_time:193380ms step_avg:155.58ms step:1254/1480 train_time:193541ms step_avg:155.58ms step:1255/1480 train_time:193712ms step_avg:155.59ms step:1256/1480 train_time:193876ms step_avg:155.60ms step:1257/1480 train_time:194039ms step_avg:155.60ms step:1258/1480 train_time:194204ms step_avg:155.61ms step:1259/1480 train_time:194367ms step_avg:155.62ms step:1260/1480 train_time:194527ms step_avg:155.62ms step:1261/1480 train_time:194689ms step_avg:155.63ms step:1262/1480 train_time:194856ms step_avg:155.64ms step:1263/1480 train_time:195021ms step_avg:155.64ms step:1264/1480 train_time:195181ms step_avg:155.65ms step:1265/1480 train_time:195341ms step_avg:155.65ms step:1266/1480 train_time:195503ms step_avg:155.66ms step:1267/1480 train_time:195665ms step_avg:155.66ms step:1268/1480 train_time:195828ms step_avg:155.67ms step:1269/1480 train_time:195996ms step_avg:155.68ms step:1270/1480 train_time:196159ms step_avg:155.68ms step:1271/1480 train_time:196321ms step_avg:155.69ms step:1272/1480 train_time:196481ms step_avg:155.69ms step:1273/1480 train_time:196643ms step_avg:155.70ms step:1274/1480 train_time:196807ms step_avg:155.70ms step:1275/1480 train_time:196967ms step_avg:155.71ms step:1276/1480 train_time:197127ms step_avg:155.71ms step:1277/1480 train_time:197289ms step_avg:155.71ms step:1278/1480 train_time:197450ms step_avg:155.72ms step:1279/1480 train_time:197612ms step_avg:155.72ms step:1280/1480 train_time:197779ms step_avg:155.73ms step:1281/1480 train_time:197941ms step_avg:155.74ms step:1282/1480 train_time:198099ms step_avg:155.74ms step:1283/1480 train_time:198262ms step_avg:155.74ms step:1284/1480 train_time:198426ms step_avg:155.75ms step:1285/1480 train_time:198587ms step_avg:155.75ms step:1286/1480 train_time:198752ms step_avg:155.76ms step:1287/1480 train_time:198914ms step_avg:155.77ms step:1288/1480 train_time:199077ms step_avg:155.77ms step:1289/1480 train_time:199245ms step_avg:155.78ms step:1290/1480 train_time:199416ms step_avg:155.79ms step:1291/1480 train_time:199579ms step_avg:155.80ms step:1292/1480 train_time:199742ms step_avg:155.80ms step:1293/1480 train_time:199910ms step_avg:155.81ms step:1294/1480 train_time:200074ms step_avg:155.82ms step:1295/1480 train_time:200239ms step_avg:155.83ms step:1296/1480 train_time:200401ms step_avg:155.83ms step:1297/1480 train_time:200564ms step_avg:155.84ms step:1298/1480 train_time:200728ms step_avg:155.85ms step:1299/1480 train_time:200891ms step_avg:155.85ms step:1300/1480 train_time:201051ms step_avg:155.85ms step:1301/1480 train_time:201214ms step_avg:155.86ms step:1302/1480 train_time:201381ms step_avg:155.87ms step:1303/1480 train_time:201548ms step_avg:155.88ms step:1304/1480 train_time:201714ms step_avg:155.88ms step:1305/1480 train_time:201877ms step_avg:155.89ms step:1306/1480 train_time:202041ms step_avg:155.90ms step:1307/1480 train_time:202201ms step_avg:155.90ms step:1308/1480 train_time:202362ms step_avg:155.90ms step:1309/1480 train_time:202526ms step_avg:155.91ms step:1310/1480 train_time:202687ms step_avg:155.91ms step:1311/1480 train_time:202848ms step_avg:155.92ms step:1312/1480 train_time:203013ms step_avg:155.92ms step:1313/1480 train_time:203176ms step_avg:155.93ms step:1314/1480 train_time:203340ms step_avg:155.94ms step:1315/1480 train_time:203503ms step_avg:155.94ms step:1316/1480 train_time:203662ms step_avg:155.94ms step:1317/1480 train_time:203823ms step_avg:155.95ms step:1318/1480 train_time:203990ms step_avg:155.96ms step:1319/1480 train_time:204157ms step_avg:155.96ms step:1320/1480 train_time:204324ms step_avg:155.97ms step:1321/1480 train_time:204487ms step_avg:155.98ms step:1322/1480 train_time:204659ms step_avg:155.99ms step:1323/1480 train_time:204823ms step_avg:156.00ms step:1324/1480 train_time:204985ms step_avg:156.00ms step:1325/1480 train_time:205156ms step_avg:156.01ms step:1326/1480 train_time:205320ms step_avg:156.02ms step:1327/1480 train_time:205482ms step_avg:156.02ms step:1328/1480 train_time:205643ms step_avg:156.03ms step:1329/1480 train_time:205837ms step_avg:156.06ms step:1330/1480 train_time:205991ms step_avg:156.05ms step:1331/1480 train_time:206154ms step_avg:156.06ms step:1332/1480 train_time:206317ms step_avg:156.06ms step:1333/1480 train_time:206482ms step_avg:156.07ms step:1334/1480 train_time:206646ms step_avg:156.08ms step:1335/1480 train_time:206808ms step_avg:156.08ms step:1336/1480 train_time:206978ms step_avg:156.09ms step:1337/1480 train_time:207143ms step_avg:156.10ms step:1338/1480 train_time:207306ms step_avg:156.10ms step:1339/1480 train_time:207473ms step_avg:156.11ms step:1340/1480 train_time:207637ms step_avg:156.12ms step:1341/1480 train_time:207799ms step_avg:156.12ms step:1342/1480 train_time:207967ms step_avg:156.13ms step:1343/1480 train_time:208129ms step_avg:156.14ms step:1344/1480 train_time:208290ms step_avg:156.14ms step:1345/1480 train_time:208463ms step_avg:156.15ms step:1346/1480 train_time:208625ms step_avg:156.16ms step:1347/1480 train_time:208788ms step_avg:156.16ms step:1348/1480 train_time:208951ms step_avg:156.17ms step:1349/1480 train_time:209114ms step_avg:156.17ms step:1350/1480 train_time:209279ms step_avg:156.18ms step:1351/1480 train_time:209444ms step_avg:156.19ms step:1352/1480 train_time:209607ms step_avg:156.19ms step:1353/1480 train_time:209775ms step_avg:156.20ms step:1354/1480 train_time:209938ms step_avg:156.20ms step:1355/1480 train_time:210101ms step_avg:156.21ms step:1356/1480 train_time:210265ms step_avg:156.21ms step:1357/1480 train_time:210431ms step_avg:156.22ms step:1358/1480 train_time:210595ms step_avg:156.23ms step:1359/1480 train_time:210761ms step_avg:156.23ms step:1360/1480 train_time:210927ms step_avg:156.24ms step:1361/1480 train_time:211095ms step_avg:156.25ms step:1362/1480 train_time:211261ms step_avg:156.26ms step:1363/1480 train_time:211428ms step_avg:156.27ms step:1364/1480 train_time:211591ms step_avg:156.27ms step:1365/1480 train_time:211752ms step_avg:156.27ms step:1366/1480 train_time:211916ms step_avg:156.28ms step:1367/1480 train_time:212080ms step_avg:156.29ms step:1368/1480 train_time:212246ms step_avg:156.29ms step:1369/1480 train_time:212416ms step_avg:156.30ms step:1370/1480 train_time:212583ms step_avg:156.31ms step:1371/1480 train_time:212745ms step_avg:156.32ms step:1372/1480 train_time:212914ms step_avg:156.32ms step:1373/1480 train_time:213075ms step_avg:156.33ms step:1374/1480 train_time:213241ms step_avg:156.33ms step:1375/1480 train_time:213403ms step_avg:156.34ms step:1375/1480 val_loss:3.2962 train_time:213476ms step_avg:156.39ms step:1376/1480 train_time:213573ms step_avg:156.35ms step:1377/1480 train_time:213732ms step_avg:156.35ms step:1378/1480 train_time:213895ms step_avg:156.36ms step:1379/1480 train_time:214060ms step_avg:156.36ms step:1380/1480 train_time:214224ms step_avg:156.37ms step:1381/1480 train_time:214393ms step_avg:156.38ms step:1382/1480 train_time:214556ms step_avg:156.38ms step:1383/1480 train_time:214718ms step_avg:156.39ms step:1384/1480 train_time:214888ms step_avg:156.40ms step:1385/1480 train_time:215049ms step_avg:156.40ms step:1386/1480 train_time:215212ms step_avg:156.40ms step:1387/1480 train_time:215376ms step_avg:156.41ms step:1388/1480 train_time:215537ms step_avg:156.41ms step:1389/1480 train_time:215703ms step_avg:156.42ms step:1390/1480 train_time:215865ms step_avg:156.42ms step:1391/1480 train_time:216029ms step_avg:156.43ms step:1392/1480 train_time:216192ms step_avg:156.43ms step:1393/1480 train_time:216354ms step_avg:156.44ms step:1394/1480 train_time:216517ms step_avg:156.44ms step:1395/1480 train_time:216678ms step_avg:156.45ms step:1396/1480 train_time:216839ms step_avg:156.45ms step:1397/1480 train_time:217000ms step_avg:156.45ms step:1398/1480 train_time:217162ms step_avg:156.46ms step:1399/1480 train_time:217323ms step_avg:156.46ms step:1400/1480 train_time:217493ms step_avg:156.47ms step:1401/1480 train_time:217653ms step_avg:156.47ms step:1402/1480 train_time:217814ms step_avg:156.48ms step:1403/1480 train_time:217979ms step_avg:156.48ms step:1404/1480 train_time:218142ms step_avg:156.49ms step:1405/1480 train_time:218309ms step_avg:156.49ms step:1406/1480 train_time:218474ms step_avg:156.50ms step:1407/1480 train_time:218634ms step_avg:156.50ms step:1408/1480 train_time:218794ms step_avg:156.51ms step:1409/1480 train_time:218966ms step_avg:156.52ms step:1410/1480 train_time:219129ms step_avg:156.52ms step:1411/1480 train_time:219291ms step_avg:156.52ms step:1412/1480 train_time:219453ms step_avg:156.53ms step:1413/1480 train_time:219616ms step_avg:156.53ms step:1414/1480 train_time:219780ms step_avg:156.54ms step:1415/1480 train_time:219945ms step_avg:156.54ms step:1416/1480 train_time:220119ms step_avg:156.56ms step:1417/1480 train_time:220285ms step_avg:156.56ms step:1418/1480 train_time:220450ms step_avg:156.57ms step:1419/1480 train_time:220616ms step_avg:156.58ms step:1420/1480 train_time:220780ms step_avg:156.58ms step:1421/1480 train_time:220946ms step_avg:156.59ms step:1422/1480 train_time:221111ms step_avg:156.59ms step:1423/1480 train_time:221273ms step_avg:156.60ms step:1424/1480 train_time:221440ms step_avg:156.61ms step:1425/1480 train_time:221611ms step_avg:156.62ms step:1426/1480 train_time:221775ms step_avg:156.62ms step:1427/1480 train_time:221940ms step_avg:156.63ms step:1428/1480 train_time:222101ms step_avg:156.63ms step:1429/1480 train_time:222263ms step_avg:156.63ms step:1430/1480 train_time:222428ms step_avg:156.64ms step:1431/1480 train_time:222596ms step_avg:156.65ms step:1432/1480 train_time:222763ms step_avg:156.65ms step:1433/1480 train_time:222932ms step_avg:156.66ms step:1434/1480 train_time:223103ms step_avg:156.67ms step:1435/1480 train_time:223270ms step_avg:156.68ms step:1436/1480 train_time:223435ms step_avg:156.69ms step:1437/1480 train_time:223596ms step_avg:156.69ms step:1438/1480 train_time:223757ms step_avg:156.69ms step:1439/1480 train_time:223923ms step_avg:156.70ms step:1440/1480 train_time:224087ms step_avg:156.70ms step:1441/1480 train_time:224252ms step_avg:156.71ms step:1442/1480 train_time:224418ms step_avg:156.72ms step:1443/1480 train_time:224592ms step_avg:156.73ms step:1444/1480 train_time:224755ms step_avg:156.73ms step:1445/1480 train_time:224917ms step_avg:156.74ms step:1446/1480 train_time:225083ms step_avg:156.74ms step:1447/1480 train_time:225250ms step_avg:156.75ms step:1448/1480 train_time:225414ms step_avg:156.76ms step:1449/1480 train_time:225578ms step_avg:156.76ms step:1450/1480 train_time:225743ms step_avg:156.77ms step:1451/1480 train_time:225907ms step_avg:156.77ms step:1452/1480 train_time:226072ms step_avg:156.78ms step:1453/1480 train_time:226234ms step_avg:156.78ms step:1454/1480 train_time:226397ms step_avg:156.78ms step:1455/1480 train_time:226563ms step_avg:156.79ms step:1456/1480 train_time:226727ms step_avg:156.80ms step:1457/1480 train_time:226891ms step_avg:156.80ms step:1458/1480 train_time:227054ms step_avg:156.81ms step:1459/1480 train_time:227219ms step_avg:156.81ms step:1460/1480 train_time:227384ms step_avg:156.82ms step:1461/1480 train_time:227547ms step_avg:156.82ms step:1462/1480 train_time:227713ms step_avg:156.83ms step:1463/1480 train_time:227877ms step_avg:156.83ms step:1464/1480 train_time:228041ms step_avg:156.84ms step:1465/1480 train_time:228207ms step_avg:156.84ms step:1466/1480 train_time:228371ms step_avg:156.85ms step:1467/1480 train_time:228535ms step_avg:156.85ms step:1468/1480 train_time:228697ms step_avg:156.86ms step:1469/1480 train_time:228860ms step_avg:156.86ms step:1470/1480 train_time:229030ms step_avg:156.87ms step:1471/1480 train_time:229201ms step_avg:156.88ms step:1472/1480 train_time:229371ms step_avg:156.89ms step:1473/1480 train_time:229534ms step_avg:156.89ms step:1474/1480 train_time:229700ms step_avg:156.90ms step:1475/1480 train_time:229870ms step_avg:156.91ms step:1476/1480 train_time:230034ms step_avg:156.91ms step:1477/1480 train_time:230201ms step_avg:156.92ms step:1478/1480 train_time:230371ms step_avg:156.93ms step:1479/1480 train_time:230536ms step_avg:156.93ms step:1480/1480 train_time:230698ms step_avg:156.94ms step:1480/1480 val_loss:3.2773 train_time:230775ms step_avg:156.99ms peak memory consumption: 34239 MiB