import os import sys with open(sys.argv[0]) as f: code = f.read() # read the code of this file ASAP, for logging import uuid import time import contextlib from dataclasses import dataclass from pathlib import Path import torch from torch import nn import torch.nn.functional as F import torch.distributed as dist import torch._inductor.config as config from torch.nn.parallel import DistributedDataParallel as DDP from torch.nn.attention.flex_attention import BlockMask, flex_attention #KoszarskyB # ----------------------------------------------------------------------------- # Muon optimizer @torch.compile def zeropower_via_newtonschulz5(G, steps=10, eps=1e-7): """ Newton-Schulz iteration to compute the zeroth power / orthogonalization of G. We opt to use a quintic iteration whose coefficients are selected to maximize the slope at zero. For the purpose of minimizing steps, it turns out to be empirically effective to keep increasing the slope at zero even beyond the point where the iteration no longer converges all the way to one everywhere on the interval. This iteration therefore does not produce UV^T but rather something like US'V^T where S' is diagonal with S_{ii}' ~ Uniform(0.5, 1.5), which turns out not to hurt model performance at all relative to UV^T, where USV^T = G is the SVD. """ assert len(G.shape) == 2 a, b, c = (3.4445, -4.7750, 2.0315) X = G.bfloat16() X /= (X.norm() + eps) # ensure top singular value <= 1 if G.size(0) > G.size(1): X = X.T for _ in range(steps): A = X @ X.T B = b * A + c * A @ A # adapted from suggestion by @jxbz, @leloykun, and @YouJiacheng X = a * X + B @ X if G.size(0) > G.size(1): X = X.T return X class Muon(torch.optim.Optimizer): """ Muon - MomentUm Orthogonalized by Newton-schulz Muon internally runs standard SGD-momentum, and then performs an orthogonalization post- processing step, in which each 2D parameter's update is replaced with the nearest orthogonal matrix. To efficiently orthogonalize each update, we use a Newton-Schulz iteration, which has the advantage that it can be stably run in bfloat16 on the GPU. Some warnings: - This optimizer assumes that all parameters passed in are 2D. - It should not be used for the embedding layer, the final fully connected layer, or any {0,1}-D parameters; those should all be optimized by a standard method (e.g., AdamW). - To use it with 4D convolutional filters, it works well to just flatten their last 3 dimensions. - We believe it is unlikely to work well for training with small batch size. - We believe it may not work well for finetuning pretrained models, but we haven't tested this. - We have not yet tried this optimizer for training scenarios larger than NanoGPT (124M). Arguments: lr: The learning rate used by the internal SGD. momentum: The momentum used by the internal SGD. nesterov: Whether to use Nesterov-style momentum in the internal SGD. (recommended) ns_steps: The number of Newton-Schulz iteration steps to use. """ def __init__(self, params, lr=0.02, momentum=0.95, nesterov=True, ns_steps=5): self.world_size = int(os.environ['WORLD_SIZE']) self.rank = int(os.environ['RANK']) defaults = dict(lr=lr, momentum=momentum, nesterov=nesterov, ns_steps=ns_steps) params = list(params) assert all(isinstance(p, torch.Tensor) for p in params) sizes = {p.numel() for p in params} param_groups = [ { 'params': [p for p in params if p.numel() == size], 'update_buffer': [ torch.empty(size, device='cuda', dtype=torch.bfloat16) for _ in range(self.world_size) ], } for size in sizes ] super().__init__(param_groups, defaults) def step(self): for group in self.param_groups: lr = group['lr'] momentum = group['momentum'] nesterov = group['nesterov'] ns_steps = group['ns_steps'] update_buffers = group['update_buffer'] # generate weight updates in distributed fashion params = group['params'] assert len(params) % self.world_size == 0 handle = None params_world = None def update_prev(): if params_world is None: return assert handle is not None handle.wait() for p_world, g_world in zip(params_world, update_buffers): p_world.data.add_( g_world.view_as(p_world), alpha=-lr * max(1, p_world.size(0) / p_world.size(1)) ** 0.5, ) for base_i in range(len(params))[::self.world_size]: p = params[base_i + self.rank] g = p.grad assert g is not None state = self.state[p] if 'momentum_buffer' not in state: state['momentum_buffer'] = torch.zeros_like(g) buf = state['momentum_buffer'] buf.lerp_(g, 1 - momentum) g = g.lerp_(buf, momentum) if nesterov else buf g = zeropower_via_newtonschulz5(g, steps=ns_steps).flatten() update_prev() handle = dist.all_gather(update_buffers, g, async_op=True) params_world = params[base_i : base_i + self.world_size] update_prev() # ----------------------------------------------------------------------------- # PyTorch nn.Module definitions for the GPT-2 model def norm(x): return F.rms_norm(x, (x.size(-1),)) class CastedLinear(nn.Linear): def __init__(self, in_features, out_features): super().__init__(in_features, out_features, bias=False) def forward(self, x): return F.linear(x, self.weight.to(x.dtype)) class Rotary(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() self.register_buffer('inv_freq', (1 / base) ** (torch.arange(0, dim, 2) / dim)) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x): seq_len = x.shape[1] if seq_len != self.seq_len_cached: t = torch.arange(seq_len, device=x.device) freqs = torch.outer(t, self.inv_freq) self.seq_len_cached = seq_len self.cos_cached = freqs.cos() self.sin_cached = freqs.sin() cos, sin = self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] # apply_rotary_emb(x, cos, sin) x1, x2 = x.chunk(2, dim=3) y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat((y1, y2), 3).type_as(x) class CausalSelfAttention(nn.Module): def __init__(self, dim, num_heads): super().__init__() assert dim % num_heads == 0 self.num_heads = num_heads self.c_q = CastedLinear(dim, dim) self.c_k = CastedLinear(dim, dim) self.c_v = CastedLinear(dim, dim) self.lambdas = nn.Parameter(torch.tensor([0.5, 0.5])) self.rotary = Rotary(dim // num_heads) # dim // num_heads = head_dim self.c_proj = CastedLinear(dim, dim) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x, vi, block_mask): B, T = x.size(0), x.size(1) # batch size, sequence length assert B == 1, "Must use batch size = 1 for FlexAttention" q = self.c_q(x).view(B, T, self.num_heads, -1) k = self.c_k(x).view(B, T, self.num_heads, -1) v = self.c_v(x).view(B, T, self.num_heads, -1) v = self.lambdas[0] * v + self.lambdas[1] * vi.view_as(v) # @KoszarskyB & @Grad62304977 q, k = norm(q), norm(k) # QK norm @Grad62304977 q, k = self.rotary(q), self.rotary(k) y = flex_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), block_mask=block_mask, enable_gqa=True) y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, dim): super().__init__() self.c_fc = CastedLinear(dim, 4 * dim) self.c_proj = CastedLinear(4 * dim, dim) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.attn = CausalSelfAttention(config.model_dim, config.num_heads) self.mlp = MLP(config.model_dim) self.lambdas = nn.Parameter(torch.tensor([1., 0.])) def forward(self, x, vi, x0, block_mask): x = self.lambdas[0] * x + self.lambdas[1] * x0 x = x + self.attn(norm(x), vi, block_mask) x = x + self.mlp(norm(x)) return x class ValueEmbedding(nn.Module): def __init__(self, config: "GPTConfig"): super().__init__() self.__setattr__ self.embed = nn.ModuleList([ nn.Embedding(config.vocab_size, config.model_dim) for _ in range(6) ]) def forward(self, inputs) -> "list[torch.Tensor]": ve = [emb(inputs) for emb in self.embed] ve += reversed(ve) return ve # ----------------------------------------------------------------------------- # The main GPT-2 model @dataclass class GPTConfig: vocab_size : int = 50304 num_layers : int = 12 num_heads : int = 6 # head dim 128 suggested by @Grad62304977 model_dim : int = 768 class GPT(nn.Module): def __init__(self, config: GPTConfig): super().__init__() self.num_layers = config.num_layers # U-net design by @brendanh0gan self.num_encoder_layers = config.num_layers // 2 # Half of the layers for encoder self.num_decoder_layers = config.num_layers - self.num_encoder_layers # Remaining for decoder # Add learnable skip connection weights for decoder layers self.skip_weights = nn.Parameter(torch.ones(self.num_decoder_layers)) self.embed = nn.Embedding(config.vocab_size, config.model_dim) self.blocks = nn.ModuleList([Block(config) for _ in range(config.num_layers)]) # token value embeddings by @KoszarskyB - inspired by @Grad62304977's value residual learning # U-net structure on token value embeddings by @leloykun self.value_embeds = ValueEmbedding(config) self.lm_head = CastedLinear(config.model_dim, config.vocab_size) self.lm_head.weight.data.zero_() # @Grad62304977 def forward( self, inputs: torch.Tensor, targets: torch.Tensor, sliding_window_num_blocks: torch.Tensor, ): BLOCK_SIZE = 128 assert inputs.ndim == 1 docs = (inputs == 50256).cumsum(0) docs_low = docs.view(-1, BLOCK_SIZE)[:, 0].contiguous() docs_high = docs.view(-1, BLOCK_SIZE)[:, -1].contiguous() def document_causal(b, h, q_idx, kv_idx): causal_mask = q_idx >= kv_idx document_mask = docs[q_idx] == docs[kv_idx] return causal_mask & document_mask def dense_to_ordered(dense_mask: torch.Tensor): num_blocks = dense_mask.sum(dim=-1, dtype=torch.int32) indices = dense_mask.argsort(dim=-1, descending=True, stable=True).to(torch.int32) return num_blocks[None, None].contiguous(), indices[None, None].contiguous() def create_doc_swc_block_mask(sliding_window_num_blocks: torch.Tensor): kv_idx = block_idx = torch.arange(512, dtype=torch.int32, device="cuda") q_idx = block_idx[:, None] causal_bm = q_idx >= kv_idx causal_full_bm = q_idx > kv_idx window_bm = q_idx - kv_idx < sliding_window_num_blocks window_full_bm = window_bm # document_bm = (docs_low[q_idx] <= docs_high[kv_idx]) & (docs_low[kv_idx] <= docs_high[q_idx]) document_bm = (docs_low[:, None] <= docs_high) & (docs_low <= docs_high[:, None]) document_full_bm = (docs_low[:, None] == docs_high) & (docs_low == docs_high[:, None]) nonzero_bm = causal_bm & window_bm & document_bm full_bm = causal_full_bm & window_full_bm & document_full_bm kv_num_blocks, kv_indices = dense_to_ordered(nonzero_bm ^ full_bm) full_kv_num_blocks, full_kv_indices = dense_to_ordered(full_bm) return BlockMask.from_kv_blocks( kv_num_blocks, kv_indices, full_kv_num_blocks, full_kv_indices, BLOCK_SIZE=BLOCK_SIZE, mask_mod=document_causal, ) block_mask = create_doc_swc_block_mask(sliding_window_num_blocks) # forward the GPT model itself x = self.embed(inputs[None]) # token embeddings of shape (b, t, model_dim) x = norm(x) # @Grad62304977 x0 = x ve = self.value_embeds(inputs) ve_enc, ve_dec = ve[:self.num_encoder_layers], ve[self.num_encoder_layers:] # Store outputs for U-Net skip connections skip_connections = [] # Encoder pass - process only the first half of the blocks for i in range(self.num_encoder_layers): x = self.blocks[i](x, ve_enc[i], x0, block_mask) skip_connections.append(x) # Decoder pass - process the remaining blocks with weighted skip connections for i in range(self.num_decoder_layers): x = x + self.skip_weights[i] * skip_connections.pop() # U-net structure on token value embeddings by @leloykun x = self.blocks[self.num_encoder_layers + i](x, ve_dec[i], x0, block_mask) x = norm(x) logits = self.lm_head(x) logits = 30 * torch.tanh(logits / 30) # @Grad62304977 logits = logits.float() loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) return loss # ----------------------------------------------------------------------------- # Our own simple Distributed Data Loader def _peek_data_shard(file: Path): # only reads the header, returns header data # header is 256 int32 header = torch.from_file(f"{file}", False, 256, dtype=torch.int32) assert header[0] == 20240520, "magic number mismatch in the data .bin file" assert header[1] == 1, "unsupported version" return int(header[2]) # number of tokens (claimed) def _load_data_shard(path: Path, num_tokens): with path.open("rb", buffering=0) as f: tokens = torch.empty(num_tokens, dtype=torch.uint16, pin_memory=True) f.seek(256 * 4) nbytes = f.readinto(tokens.numpy()) assert nbytes == 2 * num_tokens, "number of tokens read does not match header?" return tokens class DistributedDataLoader: def __init__(self, filename_pattern, seq_len, process_rank, num_processes): self.process_rank = process_rank self.num_processes = num_processes self.seq_len = seq_len # glob files that match the pattern self.files = sorted(Path.cwd().glob(filename_pattern)) assert len(self.files) > 0, f"did not find any files that match the pattern {filename_pattern}" # load and validate all data shards, count number of tokens in total self.files_num_tokens = [_peek_data_shard(file) for file in self.files] assert min(self.files_num_tokens) >= num_processes * seq_len + 1 self.total_num_tokens = sum(self.files_num_tokens) self.reset() def reset(self): self.current_shard = -1 self.advance() def advance(self): # advance to next data shard self.current_shard = (self.current_shard + 1) % len(self.files) self.current_position = self.process_rank * self.seq_len self.tokens = _load_data_shard(self.files[self.current_shard], self.files_num_tokens[self.current_shard]) def next_batch(self): batch_size = self.seq_len * self.num_processes buf = self.tokens[self.current_position:self.current_position+self.seq_len+1] # host side async is sufficient; # no performance improvement was observed when introducing a separate stream. inputs = buf[:-1].to(device="cuda", dtype=torch.int32, non_blocking=True) # inputs targets = buf[1:].to(device="cuda", dtype=torch.int64, non_blocking=True) # targets # advance current position and load next shard if necessary self.current_position += batch_size if self.current_position + batch_size + 1 >= len(self.tokens): self.advance() return inputs, targets # ----------------------------------------------------------------------------- # int main @dataclass class Hyperparameters: # data hyperparams input_bin : str = 'data/fineweb10B/fineweb_train_*.bin' # input .bin to train on input_val_bin : str = 'data/fineweb10B/fineweb_val_*.bin' # input .bin to eval validation loss on # optimization hyperparams batch_size : int = 8 # batch size, in sequences, across all devices sequence_length : int = 64*1024 # sequence length, in tokens num_iterations : int = 1480 # number of iterations to run warmup_iters : int = 0 cooldown_iters : int = 600 # number of iterations of linear warmup/cooldown for triangular or trapezoidal schedule weight_decay : float = 0 # evaluation and logging hyperparams val_loss_every : int = 125 # every how many steps to evaluate val loss? 0 for only at the end val_tokens : int = 10485760 # how many tokens of validation data? it's important to keep this fixed for consistent comparisons save_every : int = 0 # every how many steps to save the checkpoint? 0 for only at the end args = Hyperparameters() # set up DDP (distributed data parallel). torchrun sets this env variable ddp_rank = int(os.environ['RANK']) ddp_local_rank = int(os.environ['LOCAL_RANK']) ddp_world_size = int(os.environ['WORLD_SIZE']) assert torch.cuda.is_available() device = torch.device(f"cuda:{ddp_local_rank}") torch.cuda.set_device(device) print(f"using device: {device}") dist.init_process_group(backend='nccl', device_id=device) dist.barrier() master_process = (ddp_rank == 0) # this process will do logging, checkpointing etc. # begin logging logfile = None if master_process: run_id = uuid.uuid4() logdir = Path("logs") / f"{run_id}" logdir.mkdir(exist_ok=True) logfile = Path("logs") / f"{run_id}.txt" print(logfile.stem) # create the log file with logfile.open("w") as f: # begin the log by printing this file (the Python code) print(code, file=f) print("=" * 100, file=f) def print0(s, logonly=False): if master_process: with logfile.open("a") as f: if not logonly: print(s) print(s, file=f) # log information about the hardware/software environment this is running on # and print the full `nvidia-smi` to file print0(f"Running python {sys.version}") print0(f"Running pytorch {torch.version.__version__} compiled for CUDA {torch.version.cuda}\nnvidia-smi:") import subprocess result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) print0(f'{result.stdout}', logonly=True) print0('='*100, logonly=True) # calculate the number of steps to take in the val loop. assert args.val_tokens % (args.sequence_length * ddp_world_size) == 0 val_steps = args.val_tokens // (args.sequence_length * ddp_world_size) # calculate the steps of gradient accumulation required to attain the desired global batch size. assert args.batch_size % (ddp_world_size) == 0 train_accumulation_steps = args.batch_size // ddp_world_size # load tokens train_loader = DistributedDataLoader(args.input_bin, args.sequence_length, ddp_rank, ddp_world_size) val_loader = DistributedDataLoader(args.input_val_bin, args.sequence_length, ddp_rank, ddp_world_size) print0(f"Training DataLoader: total number of tokens: {train_loader.total_num_tokens} across {len(train_loader.files)} files") print0(f"Validation DataLoader: total number of tokens: {val_loader.total_num_tokens} across {len(val_loader.files)} files") print0('='*100, logonly=True) inputs_train, targets_train = train_loader.next_batch() # there are only 50257 unique GPT-2 tokens; we extend to nearest multiple of 128 for efficiency. suggested to me by @Grad62304977. # this originates from Karpathy's experiments. num_vocab = 50304 model = GPT(GPTConfig(vocab_size=num_vocab, num_layers=12, num_heads=6, model_dim=768)) model = model.cuda().bfloat16() for m in model.modules(): if isinstance(m, CastedLinear): m.float() config.coordinate_descent_tuning = True # suggested by @Chillee model = torch.compile(model) # here we wrap model into DDP container model = DDP(model, device_ids=[ddp_local_rank], broadcast_buffers=False, gradient_as_bucket_view=True) raw_model = model.module # always contains the "raw" unwrapped model # init the optimizer(s) embed_params = [*raw_model.embed.parameters(), *raw_model.value_embeds.parameters()] optimizer1 = torch.optim.Adam(embed_params, lr=0.6, betas=(0.8, 0.95), fused=True) optimizer2 = torch.optim.Adam([raw_model.lm_head.weight], lr=0.008, betas=(0.8, 0.95), fused=True) params = list(raw_model.blocks.parameters()) matrix_params = [p for p in params if p.ndim == 2] scalar_params = [p for p in params if p.ndim < 2] + [raw_model.skip_weights] optimizer3 = Muon(matrix_params, lr=0.05, momentum=0.95) optimizer4 = torch.optim.Adam(scalar_params, lr=0.04, betas=(0.8, 0.95), fused=True) optimizers = [optimizer1, optimizer2, optimizer3, optimizer4] # learning rate decay scheduler (linear warmup and cooldown) def get_lr(it): assert it <= args.num_iterations # 1) linear warmup for warmup_iters steps if it < args.warmup_iters: return (it+1) / args.warmup_iters # 2) constant lr for a while elif it < args.num_iterations - args.cooldown_iters: return 1.0 # 3) linear cooldown else: decay_ratio = (args.num_iterations - it) / args.cooldown_iters return decay_ratio schedulers = [torch.optim.lr_scheduler.LambdaLR(opt, get_lr) for opt in optimizers] sliding_window_num_blocks = torch.tensor(1, dtype=torch.int32, device="cuda") sw_num_blocks_prev = 1 # Start training loop training_time_ms = 0 # start the clock torch.cuda.synchronize() t0 = time.perf_counter() # begin training for step in range(args.num_iterations + 1): last_step = (step == args.num_iterations) # This effectively ignores timing first 10 steps, which are slower for weird reasons. # Alternately, and slightly more correctly in terms of benchmarking, we could do 10 # steps with dummy data first, and then re-initialize the model and reset the loader. if step == 10: training_time_ms = 0 t0 = time.perf_counter() timed_steps = float('nan') if step <= 11 else (step - 10) + 1 # <= 11 to avoid bug in val # Linearly increase the sliding window size over training in chunks of 64 from 64 -> 1792. By @fernbear.bsky.social frac_done = step / args.num_iterations # training progress sw_num_blocks = int(((1 - frac_done) * 64 + frac_done * 1792 + 64) // 128) if sw_num_blocks != sw_num_blocks_prev: sliding_window_num_blocks.copy_(sw_num_blocks, non_blocking=True) sw_num_blocks_prev = sw_num_blocks # once in a while evaluate the validation dataset if (last_step or (args.val_loss_every > 0 and step % args.val_loss_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.perf_counter() - t0) # run validation batches model.eval() val_loader.reset() val_loss = 0.0 for _ in range(val_steps): with torch.no_grad(): inputs_val, targets_val = val_loader.next_batch() val_loss += model(inputs_val, targets_val, sliding_window_num_blocks) dist.all_reduce(val_loss, op=dist.ReduceOp.AVG) val_loss /= val_steps # log val loss to console and to logfile print0(f'step:{step}/{args.num_iterations} val_loss:{val_loss:.4f} train_time:{training_time_ms:.0f}ms step_avg:{training_time_ms/(timed_steps-1):.2f}ms') # start the clock again torch.cuda.synchronize() t0 = time.perf_counter() if master_process and (last_step or (args.save_every > 0 and step % args.save_every == 0)): # stop the clock torch.cuda.synchronize() training_time_ms += 1000 * (time.perf_counter() - t0) # save the state of the training process log = dict(step=step, code=code, model=raw_model.state_dict(), optimizers=[opt.state_dict() for opt in optimizers]) torch.save(log, 'logs/%s/state_step%06d.pt' % (run_id, step)) # start the clock again torch.cuda.synchronize() t0 = time.perf_counter() # bit confusing: we want to make sure to eval on 0th iteration # but also after the very last iteration. so we loop for step <= num_iterations # instead of just < num_iterations (one extra due to <=), only to do # the validation/sampling one last time, and then we break right here as we're done. if last_step: break # --------------- TRAINING SECTION BEGIN ----------------- model.train() for i in range(1, train_accumulation_steps + 1): with contextlib.ExitStack() as stack: if i < train_accumulation_steps: # there's no need to sync gradients every accumulation step stack.enter_context(model.no_sync()) if step >= 5: stack.enter_context(torch.compiler.set_stance(skip_guard_eval_unsafe=True)) model(inputs_train, targets_train, sliding_window_num_blocks).backward() inputs_train, targets_train = train_loader.next_batch() if train_accumulation_steps != 1: for p in model.parameters(): p.grad /= train_accumulation_steps # momentum warmup for Muon frac = min(step/300, 1) for group in optimizer3.param_groups: group['momentum'] = (1 - frac) * 0.85 + frac * 0.95 # step the optimizers and schedulers for opt, sched in zip(optimizers, schedulers): opt.step() sched.step() # null the gradients model.zero_grad(set_to_none=True) # --------------- TRAINING SECTION END ------------------- # everything that follows now is just diagnostics, prints, logging, etc. approx_time = training_time_ms + 1000 * (time.perf_counter() - t0) print0(f"step:{step+1}/{args.num_iterations} train_time:{approx_time:.0f}ms step_avg:{approx_time/timed_steps:.2f}ms") print0(f"peak memory consumption: {torch.cuda.max_memory_allocated() // 1024 // 1024} MiB") # ------------------------------------------------------------------------- # clean up nice dist.destroy_process_group() ==================================================================================================== Running python 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] Running pytorch 2.6.0.dev20241203+cu124 compiled for CUDA 12.4 nvidia-smi: Wed Dec 11 08:05:26 2024 +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.183.06 Driver Version: 535.183.06 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA H100 80GB HBM3 On | 00000000:19:00.0 Off | 0 | | N/A 38C P0 126W / 700W | 7084MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA H100 80GB HBM3 On | 00000000:3B:00.0 Off | 0 | | N/A 30C P0 115W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA H100 80GB HBM3 On | 00000000:4C:00.0 Off | 0 | | N/A 29C P0 112W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA H100 80GB HBM3 On | 00000000:5D:00.0 Off | 0 | | N/A 36C P0 114W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA H100 80GB HBM3 On | 00000000:9B:00.0 Off | 0 | | N/A 38C P0 120W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA H100 80GB HBM3 On | 00000000:BB:00.0 Off | 0 | | N/A 30C P0 117W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA H100 80GB HBM3 On | 00000000:CB:00.0 Off | 0 | | N/A 36C P0 119W / 700W | 3451MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ | 7 NVIDIA H100 80GB HBM3 On | 00000000:DB:00.0 Off | 0 | | N/A 30C P0 118W / 700W | 3211MiB / 81559MiB | 0% Default | | | | Disabled | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| +---------------------------------------------------------------------------------------+ ==================================================================================================== Training DataLoader: total number of tokens: 1000000000 across 10 files Validation DataLoader: total number of tokens: 100000000 across 1 files ==================================================================================================== step:0/1480 val_loss:10.8258 train_time:0ms step_avg:nanms step:1/1480 train_time:29337ms step_avg:nanms step:2/1480 train_time:29447ms step_avg:nanms step:3/1480 train_time:29566ms step_avg:nanms step:4/1480 train_time:29704ms step_avg:nanms step:5/1480 train_time:29845ms step_avg:nanms step:6/1480 train_time:29988ms step_avg:nanms step:7/1480 train_time:30128ms step_avg:nanms step:8/1480 train_time:30270ms step_avg:nanms step:9/1480 train_time:30413ms step_avg:nanms step:10/1480 train_time:30559ms step_avg:nanms step:11/1480 train_time:143ms step_avg:nanms step:12/1480 train_time:279ms step_avg:nanms step:13/1480 train_time:421ms step_avg:140.24ms step:14/1480 train_time:561ms step_avg:140.36ms step:15/1480 train_time:703ms step_avg:140.66ms step:16/1480 train_time:845ms step_avg:140.80ms step:17/1480 train_time:988ms step_avg:141.13ms step:18/1480 train_time:1132ms step_avg:141.51ms step:19/1480 train_time:1276ms step_avg:141.77ms step:20/1480 train_time:1418ms step_avg:141.82ms step:21/1480 train_time:1560ms step_avg:141.78ms step:22/1480 train_time:1700ms step_avg:141.66ms step:23/1480 train_time:1842ms step_avg:141.71ms step:24/1480 train_time:1984ms step_avg:141.74ms step:25/1480 train_time:2127ms step_avg:141.80ms step:26/1480 train_time:2271ms step_avg:141.92ms step:27/1480 train_time:2415ms step_avg:142.04ms step:28/1480 train_time:2557ms step_avg:142.05ms step:29/1480 train_time:2699ms step_avg:142.05ms step:30/1480 train_time:2842ms step_avg:142.10ms step:31/1480 train_time:2984ms step_avg:142.11ms step:32/1480 train_time:3127ms step_avg:142.14ms step:33/1480 train_time:3270ms step_avg:142.16ms step:34/1480 train_time:3414ms step_avg:142.24ms step:35/1480 train_time:3556ms step_avg:142.25ms step:36/1480 train_time:3699ms step_avg:142.25ms step:37/1480 train_time:4232ms step_avg:156.74ms step:38/1480 train_time:4326ms step_avg:154.51ms step:39/1480 train_time:4463ms step_avg:153.91ms step:40/1480 train_time:4606ms step_avg:153.52ms step:41/1480 train_time:4750ms step_avg:153.21ms step:42/1480 train_time:4892ms step_avg:152.89ms step:43/1480 train_time:5035ms step_avg:152.58ms step:44/1480 train_time:5178ms step_avg:152.31ms step:45/1480 train_time:5320ms step_avg:152.01ms step:46/1480 train_time:5461ms step_avg:151.70ms step:47/1480 train_time:5604ms step_avg:151.45ms step:48/1480 train_time:5746ms step_avg:151.20ms step:49/1480 train_time:5889ms step_avg:151.00ms step:50/1480 train_time:6033ms step_avg:150.82ms step:51/1480 train_time:6176ms step_avg:150.64ms step:52/1480 train_time:6320ms step_avg:150.47ms step:53/1480 train_time:6461ms step_avg:150.26ms step:54/1480 train_time:6604ms step_avg:150.10ms step:55/1480 train_time:6746ms step_avg:149.91ms step:56/1480 train_time:6888ms step_avg:149.75ms step:57/1480 train_time:7032ms step_avg:149.62ms step:58/1480 train_time:7176ms step_avg:149.51ms step:59/1480 train_time:7318ms step_avg:149.35ms step:60/1480 train_time:7459ms step_avg:149.19ms step:61/1480 train_time:7601ms step_avg:149.05ms step:62/1480 train_time:7743ms step_avg:148.91ms step:63/1480 train_time:7886ms step_avg:148.79ms step:64/1480 train_time:8030ms step_avg:148.70ms step:65/1480 train_time:8173ms step_avg:148.59ms step:66/1480 train_time:8316ms step_avg:148.50ms step:67/1480 train_time:8459ms step_avg:148.41ms step:68/1480 train_time:8600ms step_avg:148.28ms step:69/1480 train_time:8743ms step_avg:148.19ms step:70/1480 train_time:8887ms step_avg:148.12ms step:71/1480 train_time:9030ms step_avg:148.04ms step:72/1480 train_time:9174ms step_avg:147.97ms step:73/1480 train_time:9317ms step_avg:147.89ms step:74/1480 train_time:9459ms step_avg:147.79ms step:75/1480 train_time:9600ms step_avg:147.69ms step:76/1480 train_time:9742ms step_avg:147.60ms step:77/1480 train_time:9883ms step_avg:147.51ms step:78/1480 train_time:10026ms step_avg:147.45ms step:79/1480 train_time:10169ms step_avg:147.38ms step:80/1480 train_time:10313ms step_avg:147.32ms step:81/1480 train_time:10455ms step_avg:147.25ms step:82/1480 train_time:10597ms step_avg:147.18ms step:83/1480 train_time:10740ms step_avg:147.12ms step:84/1480 train_time:10882ms step_avg:147.06ms step:85/1480 train_time:11024ms step_avg:146.99ms step:86/1480 train_time:11167ms step_avg:146.94ms step:87/1480 train_time:11314ms step_avg:146.93ms step:88/1480 train_time:11456ms step_avg:146.87ms step:89/1480 train_time:11598ms step_avg:146.81ms step:90/1480 train_time:11741ms step_avg:146.76ms step:91/1480 train_time:11883ms step_avg:146.71ms step:92/1480 train_time:12025ms step_avg:146.64ms step:93/1480 train_time:12166ms step_avg:146.58ms step:94/1480 train_time:12310ms step_avg:146.54ms step:95/1480 train_time:12452ms step_avg:146.50ms step:96/1480 train_time:12595ms step_avg:146.46ms step:97/1480 train_time:13123ms step_avg:150.84ms step:98/1480 train_time:13680ms step_avg:155.45ms step:99/1480 train_time:13781ms step_avg:154.85ms step:100/1480 train_time:13924ms step_avg:154.71ms step:101/1480 train_time:14070ms step_avg:154.62ms step:102/1480 train_time:14210ms step_avg:154.45ms step:103/1480 train_time:14353ms step_avg:154.33ms step:104/1480 train_time:14495ms step_avg:154.20ms step:105/1480 train_time:14637ms step_avg:154.08ms step:106/1480 train_time:14781ms step_avg:153.96ms step:107/1480 train_time:14923ms step_avg:153.85ms step:108/1480 train_time:15066ms step_avg:153.73ms step:109/1480 train_time:15210ms step_avg:153.63ms step:110/1480 train_time:15353ms step_avg:153.53ms step:111/1480 train_time:15496ms step_avg:153.43ms step:112/1480 train_time:15642ms step_avg:153.35ms step:113/1480 train_time:15786ms step_avg:153.26ms step:114/1480 train_time:15932ms step_avg:153.20ms step:115/1480 train_time:16079ms step_avg:153.13ms step:116/1480 train_time:16223ms step_avg:153.05ms step:117/1480 train_time:16370ms step_avg:152.99ms step:118/1480 train_time:16516ms step_avg:152.93ms step:119/1480 train_time:16661ms step_avg:152.86ms step:120/1480 train_time:16806ms step_avg:152.78ms step:121/1480 train_time:16953ms step_avg:152.73ms step:122/1480 train_time:17098ms step_avg:152.66ms step:123/1480 train_time:17246ms step_avg:152.62ms step:124/1480 train_time:17391ms step_avg:152.55ms step:125/1480 train_time:17537ms step_avg:152.50ms step:125/1480 val_loss:4.4201 train_time:17602ms step_avg:153.06ms step:126/1480 train_time:17702ms step_avg:152.61ms step:127/1480 train_time:17838ms step_avg:152.46ms step:128/1480 train_time:17985ms step_avg:152.42ms step:129/1480 train_time:18131ms step_avg:152.36ms step:130/1480 train_time:18275ms step_avg:152.29ms step:131/1480 train_time:18420ms step_avg:152.24ms step:132/1480 train_time:18566ms step_avg:152.18ms step:133/1480 train_time:18711ms step_avg:152.12ms step:134/1480 train_time:18857ms step_avg:152.07ms step:135/1480 train_time:19005ms step_avg:152.04ms step:136/1480 train_time:19149ms step_avg:151.98ms step:137/1480 train_time:19294ms step_avg:151.92ms step:138/1480 train_time:19440ms step_avg:151.88ms step:139/1480 train_time:19586ms step_avg:151.83ms step:140/1480 train_time:19730ms step_avg:151.77ms step:141/1480 train_time:19877ms step_avg:151.73ms step:142/1480 train_time:20023ms step_avg:151.69ms step:143/1480 train_time:20169ms step_avg:151.65ms step:144/1480 train_time:20313ms step_avg:151.59ms step:145/1480 train_time:20459ms step_avg:151.55ms step:146/1480 train_time:20608ms step_avg:151.53ms step:147/1480 train_time:20752ms step_avg:151.48ms step:148/1480 train_time:20898ms step_avg:151.43ms step:149/1480 train_time:21044ms step_avg:151.39ms step:150/1480 train_time:21190ms step_avg:151.36ms step:151/1480 train_time:21335ms step_avg:151.31ms step:152/1480 train_time:21482ms step_avg:151.28ms step:153/1480 train_time:21629ms step_avg:151.25ms step:154/1480 train_time:21773ms step_avg:151.20ms step:155/1480 train_time:21919ms step_avg:151.16ms step:156/1480 train_time:22065ms step_avg:151.13ms step:157/1480 train_time:22210ms step_avg:151.09ms step:158/1480 train_time:22354ms step_avg:151.04ms step:159/1480 train_time:22501ms step_avg:151.02ms step:160/1480 train_time:22648ms step_avg:150.99ms step:161/1480 train_time:22793ms step_avg:150.95ms step:162/1480 train_time:22939ms step_avg:150.91ms step:163/1480 train_time:23085ms step_avg:150.88ms step:164/1480 train_time:23230ms step_avg:150.84ms step:165/1480 train_time:23376ms step_avg:150.81ms step:166/1480 train_time:23523ms step_avg:150.79ms step:167/1480 train_time:23669ms step_avg:150.76ms step:168/1480 train_time:23814ms step_avg:150.72ms step:169/1480 train_time:23960ms step_avg:150.69ms step:170/1480 train_time:24107ms step_avg:150.67ms step:171/1480 train_time:24251ms step_avg:150.63ms step:172/1480 train_time:24397ms step_avg:150.60ms step:173/1480 train_time:24544ms step_avg:150.57ms step:174/1480 train_time:24690ms step_avg:150.55ms step:175/1480 train_time:24835ms step_avg:150.51ms step:176/1480 train_time:24981ms step_avg:150.49ms step:177/1480 train_time:25128ms step_avg:150.47ms step:178/1480 train_time:25274ms step_avg:150.44ms step:179/1480 train_time:25419ms step_avg:150.41ms step:180/1480 train_time:25954ms step_avg:152.67ms step:181/1480 train_time:26054ms step_avg:152.36ms step:182/1480 train_time:26199ms step_avg:152.32ms step:183/1480 train_time:26345ms step_avg:152.28ms step:184/1480 train_time:26490ms step_avg:152.24ms step:185/1480 train_time:26634ms step_avg:152.19ms step:186/1480 train_time:26779ms step_avg:152.16ms step:187/1480 train_time:26927ms step_avg:152.13ms step:188/1480 train_time:27074ms step_avg:152.10ms step:189/1480 train_time:27238ms step_avg:152.17ms step:190/1480 train_time:27365ms step_avg:152.03ms step:191/1480 train_time:27510ms step_avg:151.99ms step:192/1480 train_time:27655ms step_avg:151.95ms step:193/1480 train_time:27801ms step_avg:151.92ms step:194/1480 train_time:27947ms step_avg:151.89ms step:195/1480 train_time:28094ms step_avg:151.86ms step:196/1480 train_time:28240ms step_avg:151.83ms step:197/1480 train_time:28387ms step_avg:151.80ms step:198/1480 train_time:28531ms step_avg:151.76ms step:199/1480 train_time:28675ms step_avg:151.72ms step:200/1480 train_time:28821ms step_avg:151.69ms step:201/1480 train_time:28968ms step_avg:151.67ms step:202/1480 train_time:29112ms step_avg:151.62ms step:203/1480 train_time:29257ms step_avg:151.59ms step:204/1480 train_time:29405ms step_avg:151.57ms step:205/1480 train_time:29549ms step_avg:151.53ms step:206/1480 train_time:29695ms step_avg:151.50ms step:207/1480 train_time:29840ms step_avg:151.47ms step:208/1480 train_time:29987ms step_avg:151.45ms step:209/1480 train_time:30131ms step_avg:151.41ms step:210/1480 train_time:30277ms step_avg:151.38ms step:211/1480 train_time:30424ms step_avg:151.36ms step:212/1480 train_time:30569ms step_avg:151.33ms step:213/1480 train_time:30714ms step_avg:151.30ms step:214/1480 train_time:30860ms step_avg:151.27ms step:215/1480 train_time:31006ms step_avg:151.25ms step:216/1480 train_time:31150ms step_avg:151.21ms step:217/1480 train_time:31295ms step_avg:151.18ms step:218/1480 train_time:31902ms step_avg:153.37ms step:219/1480 train_time:32000ms step_avg:153.11ms step:220/1480 train_time:32145ms step_avg:153.07ms step:221/1480 train_time:32675ms step_avg:154.86ms step:222/1480 train_time:32784ms step_avg:154.64ms step:223/1480 train_time:33311ms step_avg:156.39ms step:224/1480 train_time:33417ms step_avg:156.15ms step:225/1480 train_time:33565ms step_avg:156.12ms step:226/1480 train_time:33712ms step_avg:156.07ms step:227/1480 train_time:33860ms step_avg:156.04ms step:228/1480 train_time:34008ms step_avg:156.00ms step:229/1480 train_time:34155ms step_avg:155.96ms step:230/1480 train_time:34305ms step_avg:155.93ms step:231/1480 train_time:34453ms step_avg:155.90ms step:232/1480 train_time:34603ms step_avg:155.87ms step:233/1480 train_time:34752ms step_avg:155.84ms step:234/1480 train_time:34901ms step_avg:155.81ms step:235/1480 train_time:35049ms step_avg:155.77ms step:236/1480 train_time:35198ms step_avg:155.74ms step:237/1480 train_time:35347ms step_avg:155.71ms step:238/1480 train_time:35495ms step_avg:155.68ms step:239/1480 train_time:35644ms step_avg:155.65ms step:240/1480 train_time:35792ms step_avg:155.62ms step:241/1480 train_time:35941ms step_avg:155.59ms step:242/1480 train_time:36089ms step_avg:155.56ms step:243/1480 train_time:36237ms step_avg:155.53ms step:244/1480 train_time:36387ms step_avg:155.50ms step:245/1480 train_time:36534ms step_avg:155.46ms step:246/1480 train_time:36683ms step_avg:155.44ms step:247/1480 train_time:36831ms step_avg:155.41ms step:248/1480 train_time:36979ms step_avg:155.38ms step:249/1480 train_time:37128ms step_avg:155.35ms step:250/1480 train_time:37277ms step_avg:155.32ms step:250/1480 val_loss:3.9999 train_time:37343ms step_avg:155.60ms step:251/1480 train_time:37436ms step_avg:155.34ms step:252/1480 train_time:37582ms step_avg:155.30ms step:253/1480 train_time:37732ms step_avg:155.27ms step:254/1480 train_time:37880ms step_avg:155.24ms step:255/1480 train_time:38027ms step_avg:155.21ms step:256/1480 train_time:38176ms step_avg:155.19ms step:257/1480 train_time:38323ms step_avg:155.15ms step:258/1480 train_time:38472ms step_avg:155.13ms step:259/1480 train_time:38621ms step_avg:155.11ms step:260/1480 train_time:38769ms step_avg:155.08ms step:261/1480 train_time:38919ms step_avg:155.06ms step:262/1480 train_time:39066ms step_avg:155.02ms step:263/1480 train_time:39214ms step_avg:155.00ms step:264/1480 train_time:39362ms step_avg:154.97ms step:265/1480 train_time:39510ms step_avg:154.94ms step:266/1480 train_time:39659ms step_avg:154.92ms step:267/1480 train_time:39808ms step_avg:154.89ms step:268/1480 train_time:39957ms step_avg:154.87ms step:269/1480 train_time:40103ms step_avg:154.84ms step:270/1480 train_time:40253ms step_avg:154.82ms step:271/1480 train_time:40401ms step_avg:154.79ms step:272/1480 train_time:40547ms step_avg:154.76ms step:273/1480 train_time:40697ms step_avg:154.74ms step:274/1480 train_time:40843ms step_avg:154.71ms step:275/1480 train_time:40992ms step_avg:154.69ms step:276/1480 train_time:41141ms step_avg:154.67ms step:277/1480 train_time:41290ms step_avg:154.64ms step:278/1480 train_time:41439ms step_avg:154.62ms step:279/1480 train_time:41587ms step_avg:154.60ms step:280/1480 train_time:41736ms step_avg:154.58ms step:281/1480 train_time:41883ms step_avg:154.55ms step:282/1480 train_time:42032ms step_avg:154.53ms step:283/1480 train_time:42181ms step_avg:154.51ms step:284/1480 train_time:42330ms step_avg:154.49ms step:285/1480 train_time:42479ms step_avg:154.47ms step:286/1480 train_time:42630ms step_avg:154.45ms step:287/1480 train_time:42778ms step_avg:154.43ms step:288/1480 train_time:42927ms step_avg:154.41ms step:289/1480 train_time:43075ms step_avg:154.39ms step:290/1480 train_time:43223ms step_avg:154.37ms step:291/1480 train_time:43373ms step_avg:154.35ms step:292/1480 train_time:43521ms step_avg:154.33ms step:293/1480 train_time:43670ms step_avg:154.31ms step:294/1480 train_time:43819ms step_avg:154.29ms step:295/1480 train_time:43966ms step_avg:154.27ms step:296/1480 train_time:44114ms step_avg:154.25ms step:297/1480 train_time:44262ms step_avg:154.22ms step:298/1480 train_time:44410ms step_avg:154.20ms step:299/1480 train_time:44560ms step_avg:154.19ms step:300/1480 train_time:44709ms step_avg:154.17ms step:301/1480 train_time:44858ms step_avg:154.15ms step:302/1480 train_time:45005ms step_avg:154.13ms step:303/1480 train_time:45153ms step_avg:154.11ms step:304/1480 train_time:45301ms step_avg:154.08ms step:305/1480 train_time:45448ms step_avg:154.06ms step:306/1480 train_time:45597ms step_avg:154.05ms step:307/1480 train_time:45745ms step_avg:154.02ms step:308/1480 train_time:45894ms step_avg:154.01ms step:309/1480 train_time:46042ms step_avg:153.99ms step:310/1480 train_time:46189ms step_avg:153.96ms step:311/1480 train_time:46338ms step_avg:153.95ms step:312/1480 train_time:46486ms step_avg:153.93ms step:313/1480 train_time:46634ms step_avg:153.91ms step:314/1480 train_time:46782ms step_avg:153.89ms step:315/1480 train_time:46931ms step_avg:153.87ms step:316/1480 train_time:47079ms step_avg:153.85ms step:317/1480 train_time:47229ms step_avg:153.84ms step:318/1480 train_time:47378ms step_avg:153.82ms step:319/1480 train_time:47527ms step_avg:153.81ms step:320/1480 train_time:47676ms step_avg:153.79ms step:321/1480 train_time:47824ms step_avg:153.77ms step:322/1480 train_time:47973ms step_avg:153.76ms step:323/1480 train_time:48121ms step_avg:153.74ms step:324/1480 train_time:48269ms step_avg:153.72ms step:325/1480 train_time:48418ms step_avg:153.71ms step:326/1480 train_time:48566ms step_avg:153.69ms step:327/1480 train_time:48714ms step_avg:153.67ms step:328/1480 train_time:48862ms step_avg:153.66ms step:329/1480 train_time:49012ms step_avg:153.64ms step:330/1480 train_time:49161ms step_avg:153.63ms step:331/1480 train_time:49312ms step_avg:153.62ms step:332/1480 train_time:49463ms step_avg:153.61ms step:333/1480 train_time:49614ms step_avg:153.60ms step:334/1480 train_time:49764ms step_avg:153.59ms step:335/1480 train_time:49915ms step_avg:153.59ms step:336/1480 train_time:50065ms step_avg:153.57ms step:337/1480 train_time:50217ms step_avg:153.57ms step:338/1480 train_time:50366ms step_avg:153.56ms step:339/1480 train_time:50518ms step_avg:153.55ms step:340/1480 train_time:50668ms step_avg:153.54ms step:341/1480 train_time:50819ms step_avg:153.53ms step:342/1480 train_time:50969ms step_avg:153.52ms step:343/1480 train_time:51120ms step_avg:153.51ms step:344/1480 train_time:51270ms step_avg:153.50ms step:345/1480 train_time:51421ms step_avg:153.50ms step:346/1480 train_time:51571ms step_avg:153.49ms step:347/1480 train_time:51722ms step_avg:153.48ms step:348/1480 train_time:51872ms step_avg:153.47ms step:349/1480 train_time:52023ms step_avg:153.46ms step:350/1480 train_time:52175ms step_avg:153.46ms step:351/1480 train_time:52325ms step_avg:153.45ms step:352/1480 train_time:52476ms step_avg:153.44ms step:353/1480 train_time:52625ms step_avg:153.43ms step:354/1480 train_time:52776ms step_avg:153.42ms step:355/1480 train_time:52926ms step_avg:153.41ms step:356/1480 train_time:53077ms step_avg:153.40ms step:357/1480 train_time:53228ms step_avg:153.39ms step:358/1480 train_time:53379ms step_avg:153.39ms step:359/1480 train_time:53532ms step_avg:153.39ms step:360/1480 train_time:53683ms step_avg:153.38ms step:361/1480 train_time:53835ms step_avg:153.38ms step:362/1480 train_time:53985ms step_avg:153.37ms step:363/1480 train_time:54136ms step_avg:153.36ms step:364/1480 train_time:54286ms step_avg:153.35ms step:365/1480 train_time:54437ms step_avg:153.34ms step:366/1480 train_time:54587ms step_avg:153.33ms step:367/1480 train_time:54738ms step_avg:153.33ms step:368/1480 train_time:54889ms step_avg:153.32ms step:369/1480 train_time:55040ms step_avg:153.32ms step:370/1480 train_time:55189ms step_avg:153.30ms step:371/1480 train_time:55340ms step_avg:153.30ms step:372/1480 train_time:55490ms step_avg:153.29ms step:373/1480 train_time:55641ms step_avg:153.28ms step:374/1480 train_time:55791ms step_avg:153.27ms step:375/1480 train_time:55942ms step_avg:153.27ms step:375/1480 val_loss:3.8080 train_time:56009ms step_avg:153.45ms step:376/1480 train_time:56102ms step_avg:153.28ms step:377/1480 train_time:56251ms step_avg:153.27ms step:378/1480 train_time:56402ms step_avg:153.27ms step:379/1480 train_time:56567ms step_avg:153.30ms step:380/1480 train_time:56702ms step_avg:153.25ms step:381/1480 train_time:56853ms step_avg:153.24ms step:382/1480 train_time:57002ms step_avg:153.23ms step:383/1480 train_time:57155ms step_avg:153.23ms step:384/1480 train_time:57306ms step_avg:153.22ms step:385/1480 train_time:57457ms step_avg:153.22ms step:386/1480 train_time:57607ms step_avg:153.21ms step:387/1480 train_time:57759ms step_avg:153.21ms step:388/1480 train_time:57908ms step_avg:153.20ms step:389/1480 train_time:58059ms step_avg:153.19ms step:390/1480 train_time:58210ms step_avg:153.19ms step:391/1480 train_time:58361ms step_avg:153.18ms step:392/1480 train_time:58512ms step_avg:153.17ms step:393/1480 train_time:58661ms step_avg:153.16ms step:394/1480 train_time:58813ms step_avg:153.16ms step:395/1480 train_time:58962ms step_avg:153.15ms step:396/1480 train_time:59113ms step_avg:153.14ms step:397/1480 train_time:59263ms step_avg:153.13ms step:398/1480 train_time:59415ms step_avg:153.13ms step:399/1480 train_time:59564ms step_avg:153.12ms step:400/1480 train_time:59716ms step_avg:153.12ms step:401/1480 train_time:59866ms step_avg:153.11ms step:402/1480 train_time:60017ms step_avg:153.10ms step:403/1480 train_time:60167ms step_avg:153.10ms step:404/1480 train_time:60317ms step_avg:153.09ms step:405/1480 train_time:60468ms step_avg:153.08ms step:406/1480 train_time:60619ms step_avg:153.08ms step:407/1480 train_time:60771ms step_avg:153.08ms step:408/1480 train_time:60921ms step_avg:153.07ms step:409/1480 train_time:61072ms step_avg:153.06ms step:410/1480 train_time:61222ms step_avg:153.06ms step:411/1480 train_time:61373ms step_avg:153.05ms step:412/1480 train_time:61524ms step_avg:153.04ms step:413/1480 train_time:61675ms step_avg:153.04ms step:414/1480 train_time:61826ms step_avg:153.03ms step:415/1480 train_time:61977ms step_avg:153.03ms step:416/1480 train_time:62128ms step_avg:153.02ms step:417/1480 train_time:62279ms step_avg:153.02ms step:418/1480 train_time:62431ms step_avg:153.02ms step:419/1480 train_time:62581ms step_avg:153.01ms step:420/1480 train_time:62732ms step_avg:153.01ms step:421/1480 train_time:62882ms step_avg:153.00ms step:422/1480 train_time:63033ms step_avg:152.99ms step:423/1480 train_time:63183ms step_avg:152.98ms step:424/1480 train_time:63335ms step_avg:152.98ms step:425/1480 train_time:63486ms step_avg:152.98ms step:426/1480 train_time:63637ms step_avg:152.97ms step:427/1480 train_time:63787ms step_avg:152.97ms step:428/1480 train_time:63938ms step_avg:152.96ms step:429/1480 train_time:64089ms step_avg:152.96ms step:430/1480 train_time:64239ms step_avg:152.95ms step:431/1480 train_time:64390ms step_avg:152.95ms step:432/1480 train_time:64541ms step_avg:152.94ms step:433/1480 train_time:64692ms step_avg:152.94ms step:434/1480 train_time:64842ms step_avg:152.93ms step:435/1480 train_time:64993ms step_avg:152.92ms step:436/1480 train_time:65145ms step_avg:152.92ms step:437/1480 train_time:65295ms step_avg:152.92ms step:438/1480 train_time:65446ms step_avg:152.91ms step:439/1480 train_time:65597ms step_avg:152.91ms step:440/1480 train_time:65749ms step_avg:152.90ms step:441/1480 train_time:65902ms step_avg:152.90ms step:442/1480 train_time:66055ms step_avg:152.90ms step:443/1480 train_time:66207ms step_avg:152.90ms step:444/1480 train_time:66359ms step_avg:152.90ms step:445/1480 train_time:66512ms step_avg:152.90ms step:446/1480 train_time:66663ms step_avg:152.90ms step:447/1480 train_time:66816ms step_avg:152.90ms step:448/1480 train_time:66969ms step_avg:152.90ms step:449/1480 train_time:67121ms step_avg:152.89ms step:450/1480 train_time:67275ms step_avg:152.90ms step:451/1480 train_time:67427ms step_avg:152.90ms step:452/1480 train_time:67581ms step_avg:152.90ms step:453/1480 train_time:67734ms step_avg:152.90ms step:454/1480 train_time:67885ms step_avg:152.89ms step:455/1480 train_time:68038ms step_avg:152.89ms step:456/1480 train_time:68191ms step_avg:152.89ms step:457/1480 train_time:68343ms step_avg:152.89ms step:458/1480 train_time:68495ms step_avg:152.89ms step:459/1480 train_time:68651ms step_avg:152.90ms step:460/1480 train_time:68803ms step_avg:152.90ms step:461/1480 train_time:68957ms step_avg:152.90ms step:462/1480 train_time:69110ms step_avg:152.90ms step:463/1480 train_time:69263ms step_avg:152.90ms step:464/1480 train_time:69416ms step_avg:152.90ms step:465/1480 train_time:69568ms step_avg:152.90ms step:466/1480 train_time:69721ms step_avg:152.90ms step:467/1480 train_time:69875ms step_avg:152.90ms step:468/1480 train_time:70027ms step_avg:152.90ms step:469/1480 train_time:70179ms step_avg:152.90ms step:470/1480 train_time:70333ms step_avg:152.90ms step:471/1480 train_time:70485ms step_avg:152.90ms step:472/1480 train_time:70638ms step_avg:152.90ms step:473/1480 train_time:70790ms step_avg:152.89ms step:474/1480 train_time:70943ms step_avg:152.89ms step:475/1480 train_time:71097ms step_avg:152.90ms step:476/1480 train_time:71250ms step_avg:152.90ms step:477/1480 train_time:71403ms step_avg:152.90ms step:478/1480 train_time:71556ms step_avg:152.90ms step:479/1480 train_time:71709ms step_avg:152.90ms step:480/1480 train_time:71862ms step_avg:152.90ms step:481/1480 train_time:72016ms step_avg:152.90ms step:482/1480 train_time:72168ms step_avg:152.90ms step:483/1480 train_time:72322ms step_avg:152.90ms step:484/1480 train_time:72476ms step_avg:152.90ms step:485/1480 train_time:72629ms step_avg:152.90ms step:486/1480 train_time:72783ms step_avg:152.91ms step:487/1480 train_time:72936ms step_avg:152.91ms step:488/1480 train_time:73088ms step_avg:152.90ms step:489/1480 train_time:73240ms step_avg:152.90ms step:490/1480 train_time:73392ms step_avg:152.90ms step:491/1480 train_time:73545ms step_avg:152.90ms step:492/1480 train_time:73698ms step_avg:152.90ms step:493/1480 train_time:73852ms step_avg:152.90ms step:494/1480 train_time:74004ms step_avg:152.90ms step:495/1480 train_time:74157ms step_avg:152.90ms step:496/1480 train_time:74310ms step_avg:152.90ms step:497/1480 train_time:74463ms step_avg:152.90ms step:498/1480 train_time:74617ms step_avg:152.90ms step:499/1480 train_time:74769ms step_avg:152.90ms step:500/1480 train_time:74922ms step_avg:152.90ms step:500/1480 val_loss:3.6874 train_time:74991ms step_avg:153.04ms step:501/1480 train_time:75091ms step_avg:152.94ms step:502/1480 train_time:75234ms step_avg:152.91ms step:503/1480 train_time:75386ms step_avg:152.91ms step:504/1480 train_time:75538ms step_avg:152.91ms step:505/1480 train_time:75689ms step_avg:152.91ms step:506/1480 train_time:75841ms step_avg:152.91ms step:507/1480 train_time:75994ms step_avg:152.91ms step:508/1480 train_time:76150ms step_avg:152.91ms step:509/1480 train_time:76304ms step_avg:152.91ms step:510/1480 train_time:76457ms step_avg:152.91ms step:511/1480 train_time:76609ms step_avg:152.91ms step:512/1480 train_time:76761ms step_avg:152.91ms step:513/1480 train_time:76915ms step_avg:152.91ms step:514/1480 train_time:77067ms step_avg:152.91ms step:515/1480 train_time:77222ms step_avg:152.91ms step:516/1480 train_time:77375ms step_avg:152.92ms step:517/1480 train_time:77529ms step_avg:152.92ms step:518/1480 train_time:77682ms step_avg:152.92ms step:519/1480 train_time:77834ms step_avg:152.92ms step:520/1480 train_time:77987ms step_avg:152.92ms step:521/1480 train_time:78139ms step_avg:152.91ms step:522/1480 train_time:78293ms step_avg:152.92ms step:523/1480 train_time:78445ms step_avg:152.92ms step:524/1480 train_time:78598ms step_avg:152.91ms step:525/1480 train_time:78752ms step_avg:152.92ms step:526/1480 train_time:78904ms step_avg:152.91ms step:527/1480 train_time:79057ms step_avg:152.91ms step:528/1480 train_time:79210ms step_avg:152.91ms step:529/1480 train_time:79362ms step_avg:152.91ms step:530/1480 train_time:79515ms step_avg:152.91ms step:531/1480 train_time:79667ms step_avg:152.91ms step:532/1480 train_time:79820ms step_avg:152.91ms step:533/1480 train_time:79974ms step_avg:152.91ms step:534/1480 train_time:80127ms step_avg:152.91ms step:535/1480 train_time:80279ms step_avg:152.91ms step:536/1480 train_time:80433ms step_avg:152.91ms step:537/1480 train_time:80586ms step_avg:152.91ms step:538/1480 train_time:80739ms step_avg:152.91ms step:539/1480 train_time:80892ms step_avg:152.91ms step:540/1480 train_time:81044ms step_avg:152.91ms step:541/1480 train_time:81197ms step_avg:152.91ms step:542/1480 train_time:81350ms step_avg:152.91ms step:543/1480 train_time:81502ms step_avg:152.91ms step:544/1480 train_time:81655ms step_avg:152.91ms step:545/1480 train_time:81809ms step_avg:152.91ms step:546/1480 train_time:81961ms step_avg:152.91ms step:547/1480 train_time:82113ms step_avg:152.91ms step:548/1480 train_time:82266ms step_avg:152.91ms step:549/1480 train_time:82419ms step_avg:152.91ms step:550/1480 train_time:82574ms step_avg:152.91ms step:551/1480 train_time:82729ms step_avg:152.92ms step:552/1480 train_time:82884ms step_avg:152.92ms step:553/1480 train_time:83039ms step_avg:152.93ms step:554/1480 train_time:83193ms step_avg:152.93ms step:555/1480 train_time:83346ms step_avg:152.93ms step:556/1480 train_time:83500ms step_avg:152.93ms step:557/1480 train_time:83656ms step_avg:152.94ms step:558/1480 train_time:83811ms step_avg:152.94ms step:559/1480 train_time:83965ms step_avg:152.94ms step:560/1480 train_time:84120ms step_avg:152.94ms step:561/1480 train_time:84274ms step_avg:152.95ms step:562/1480 train_time:84429ms step_avg:152.95ms step:563/1480 train_time:84584ms step_avg:152.95ms step:564/1480 train_time:84740ms step_avg:152.96ms step:565/1480 train_time:84894ms step_avg:152.96ms step:566/1480 train_time:85050ms step_avg:152.97ms step:567/1480 train_time:85205ms step_avg:152.97ms step:568/1480 train_time:85359ms step_avg:152.97ms step:569/1480 train_time:85527ms step_avg:153.00ms step:570/1480 train_time:85669ms step_avg:152.98ms step:571/1480 train_time:85824ms step_avg:152.98ms step:572/1480 train_time:85979ms step_avg:152.99ms step:573/1480 train_time:86134ms step_avg:152.99ms step:574/1480 train_time:86289ms step_avg:152.99ms step:575/1480 train_time:86443ms step_avg:153.00ms step:576/1480 train_time:86597ms step_avg:153.00ms step:577/1480 train_time:86752ms step_avg:153.00ms step:578/1480 train_time:86908ms step_avg:153.01ms step:579/1480 train_time:87062ms step_avg:153.01ms step:580/1480 train_time:87216ms step_avg:153.01ms step:581/1480 train_time:87370ms step_avg:153.01ms step:582/1480 train_time:87524ms step_avg:153.01ms step:583/1480 train_time:87679ms step_avg:153.02ms step:584/1480 train_time:87834ms step_avg:153.02ms step:585/1480 train_time:87988ms step_avg:153.02ms step:586/1480 train_time:88142ms step_avg:153.02ms step:587/1480 train_time:88297ms step_avg:153.03ms step:588/1480 train_time:88451ms step_avg:153.03ms step:589/1480 train_time:88606ms step_avg:153.03ms step:590/1480 train_time:88761ms step_avg:153.04ms step:591/1480 train_time:88916ms step_avg:153.04ms step:592/1480 train_time:89071ms step_avg:153.04ms step:593/1480 train_time:89227ms step_avg:153.05ms step:594/1480 train_time:89383ms step_avg:153.05ms step:595/1480 train_time:89539ms step_avg:153.06ms step:596/1480 train_time:89694ms step_avg:153.06ms step:597/1480 train_time:89849ms step_avg:153.07ms step:598/1480 train_time:90004ms step_avg:153.07ms step:599/1480 train_time:90159ms step_avg:153.07ms step:600/1480 train_time:90314ms step_avg:153.08ms step:601/1480 train_time:90472ms step_avg:153.08ms step:602/1480 train_time:90624ms step_avg:153.08ms step:603/1480 train_time:90779ms step_avg:153.08ms step:604/1480 train_time:90934ms step_avg:153.09ms step:605/1480 train_time:91088ms step_avg:153.09ms step:606/1480 train_time:91244ms step_avg:153.09ms step:607/1480 train_time:91400ms step_avg:153.10ms step:608/1480 train_time:91556ms step_avg:153.10ms step:609/1480 train_time:91710ms step_avg:153.11ms step:610/1480 train_time:91864ms step_avg:153.11ms step:611/1480 train_time:92019ms step_avg:153.11ms step:612/1480 train_time:92174ms step_avg:153.11ms step:613/1480 train_time:92330ms step_avg:153.12ms step:614/1480 train_time:92485ms step_avg:153.12ms step:615/1480 train_time:92639ms step_avg:153.12ms step:616/1480 train_time:92793ms step_avg:153.12ms step:617/1480 train_time:92949ms step_avg:153.13ms step:618/1480 train_time:93104ms step_avg:153.13ms step:619/1480 train_time:93259ms step_avg:153.13ms step:620/1480 train_time:93414ms step_avg:153.14ms step:621/1480 train_time:93569ms step_avg:153.14ms step:622/1480 train_time:93724ms step_avg:153.14ms step:623/1480 train_time:93879ms step_avg:153.15ms step:624/1480 train_time:94034ms step_avg:153.15ms step:625/1480 train_time:94187ms step_avg:153.15ms step:625/1480 val_loss:3.6061 train_time:94258ms step_avg:153.26ms step:626/1480 train_time:94350ms step_avg:153.17ms step:627/1480 train_time:94503ms step_avg:153.17ms step:628/1480 train_time:94657ms step_avg:153.17ms step:629/1480 train_time:94811ms step_avg:153.17ms step:630/1480 train_time:94965ms step_avg:153.17ms step:631/1480 train_time:95119ms step_avg:153.17ms step:632/1480 train_time:95273ms step_avg:153.17ms step:633/1480 train_time:95428ms step_avg:153.18ms step:634/1480 train_time:95581ms step_avg:153.18ms step:635/1480 train_time:95737ms step_avg:153.18ms step:636/1480 train_time:95891ms step_avg:153.18ms step:637/1480 train_time:96046ms step_avg:153.18ms step:638/1480 train_time:96201ms step_avg:153.19ms step:639/1480 train_time:96354ms step_avg:153.19ms step:640/1480 train_time:96509ms step_avg:153.19ms step:641/1480 train_time:96663ms step_avg:153.19ms step:642/1480 train_time:96818ms step_avg:153.19ms step:643/1480 train_time:96973ms step_avg:153.20ms step:644/1480 train_time:97128ms step_avg:153.20ms step:645/1480 train_time:97282ms step_avg:153.20ms step:646/1480 train_time:97438ms step_avg:153.20ms step:647/1480 train_time:97594ms step_avg:153.21ms step:648/1480 train_time:97750ms step_avg:153.21ms step:649/1480 train_time:97905ms step_avg:153.22ms step:650/1480 train_time:98060ms step_avg:153.22ms step:651/1480 train_time:98215ms step_avg:153.22ms step:652/1480 train_time:98370ms step_avg:153.22ms step:653/1480 train_time:98525ms step_avg:153.23ms step:654/1480 train_time:98679ms step_avg:153.23ms step:655/1480 train_time:98832ms step_avg:153.23ms step:656/1480 train_time:98988ms step_avg:153.23ms step:657/1480 train_time:99143ms step_avg:153.24ms step:658/1480 train_time:99298ms step_avg:153.24ms step:659/1480 train_time:99453ms step_avg:153.24ms step:660/1480 train_time:99609ms step_avg:153.24ms step:661/1480 train_time:99766ms step_avg:153.25ms step:662/1480 train_time:99922ms step_avg:153.25ms step:663/1480 train_time:100078ms step_avg:153.26ms step:664/1480 train_time:100234ms step_avg:153.26ms step:665/1480 train_time:100391ms step_avg:153.27ms step:666/1480 train_time:100547ms step_avg:153.27ms step:667/1480 train_time:100702ms step_avg:153.28ms step:668/1480 train_time:100858ms step_avg:153.28ms step:669/1480 train_time:101016ms step_avg:153.29ms step:670/1480 train_time:101172ms step_avg:153.29ms step:671/1480 train_time:101328ms step_avg:153.30ms step:672/1480 train_time:101485ms step_avg:153.30ms step:673/1480 train_time:101642ms step_avg:153.31ms step:674/1480 train_time:101798ms step_avg:153.31ms step:675/1480 train_time:101955ms step_avg:153.32ms step:676/1480 train_time:102113ms step_avg:153.32ms step:677/1480 train_time:102268ms step_avg:153.33ms step:678/1480 train_time:102425ms step_avg:153.33ms step:679/1480 train_time:102581ms step_avg:153.33ms step:680/1480 train_time:102738ms step_avg:153.34ms step:681/1480 train_time:102893ms step_avg:153.34ms step:682/1480 train_time:103050ms step_avg:153.35ms step:683/1480 train_time:103206ms step_avg:153.35ms step:684/1480 train_time:103364ms step_avg:153.36ms step:685/1480 train_time:103521ms step_avg:153.36ms step:686/1480 train_time:103677ms step_avg:153.37ms step:687/1480 train_time:103833ms step_avg:153.37ms step:688/1480 train_time:103990ms step_avg:153.38ms step:689/1480 train_time:104147ms step_avg:153.38ms step:690/1480 train_time:104306ms step_avg:153.39ms step:691/1480 train_time:104463ms step_avg:153.40ms step:692/1480 train_time:104619ms step_avg:153.40ms step:693/1480 train_time:104775ms step_avg:153.40ms step:694/1480 train_time:104932ms step_avg:153.41ms step:695/1480 train_time:105087ms step_avg:153.41ms step:696/1480 train_time:105244ms step_avg:153.42ms step:697/1480 train_time:105400ms step_avg:153.42ms step:698/1480 train_time:105555ms step_avg:153.42ms step:699/1480 train_time:105711ms step_avg:153.43ms step:700/1480 train_time:105868ms step_avg:153.43ms step:701/1480 train_time:106024ms step_avg:153.44ms step:702/1480 train_time:106180ms step_avg:153.44ms step:703/1480 train_time:106335ms step_avg:153.44ms step:704/1480 train_time:106491ms step_avg:153.45ms step:705/1480 train_time:106648ms step_avg:153.45ms step:706/1480 train_time:106806ms step_avg:153.46ms step:707/1480 train_time:106962ms step_avg:153.46ms step:708/1480 train_time:107118ms step_avg:153.46ms step:709/1480 train_time:107274ms step_avg:153.47ms step:710/1480 train_time:107429ms step_avg:153.47ms step:711/1480 train_time:107585ms step_avg:153.47ms step:712/1480 train_time:107744ms step_avg:153.48ms step:713/1480 train_time:107901ms step_avg:153.49ms step:714/1480 train_time:108057ms step_avg:153.49ms step:715/1480 train_time:108212ms step_avg:153.49ms step:716/1480 train_time:108367ms step_avg:153.49ms step:717/1480 train_time:108524ms step_avg:153.50ms step:718/1480 train_time:108679ms step_avg:153.50ms step:719/1480 train_time:108836ms step_avg:153.51ms step:720/1480 train_time:108994ms step_avg:153.51ms step:721/1480 train_time:109151ms step_avg:153.52ms step:722/1480 train_time:109307ms step_avg:153.52ms step:723/1480 train_time:109462ms step_avg:153.52ms step:724/1480 train_time:109618ms step_avg:153.53ms step:725/1480 train_time:109775ms step_avg:153.53ms step:726/1480 train_time:109932ms step_avg:153.54ms step:727/1480 train_time:110091ms step_avg:153.54ms step:728/1480 train_time:110247ms step_avg:153.55ms step:729/1480 train_time:110404ms step_avg:153.55ms step:730/1480 train_time:110561ms step_avg:153.56ms step:731/1480 train_time:110717ms step_avg:153.56ms step:732/1480 train_time:110874ms step_avg:153.56ms step:733/1480 train_time:111030ms step_avg:153.57ms step:734/1480 train_time:111186ms step_avg:153.57ms step:735/1480 train_time:111343ms step_avg:153.58ms step:736/1480 train_time:111499ms step_avg:153.58ms step:737/1480 train_time:111654ms step_avg:153.58ms step:738/1480 train_time:111811ms step_avg:153.59ms step:739/1480 train_time:111967ms step_avg:153.59ms step:740/1480 train_time:112125ms step_avg:153.60ms step:741/1480 train_time:112283ms step_avg:153.60ms step:742/1480 train_time:112439ms step_avg:153.60ms step:743/1480 train_time:112595ms step_avg:153.61ms step:744/1480 train_time:112751ms step_avg:153.61ms step:745/1480 train_time:112909ms step_avg:153.62ms step:746/1480 train_time:113065ms step_avg:153.62ms step:747/1480 train_time:113221ms step_avg:153.62ms step:748/1480 train_time:113380ms step_avg:153.63ms step:749/1480 train_time:113537ms step_avg:153.64ms step:750/1480 train_time:113693ms step_avg:153.64ms step:750/1480 val_loss:3.5525 train_time:113765ms step_avg:153.74ms step:751/1480 train_time:113862ms step_avg:153.66ms step:752/1480 train_time:114013ms step_avg:153.66ms step:753/1480 train_time:114170ms step_avg:153.66ms step:754/1480 train_time:114325ms step_avg:153.66ms step:755/1480 train_time:114482ms step_avg:153.67ms step:756/1480 train_time:114638ms step_avg:153.67ms step:757/1480 train_time:114795ms step_avg:153.67ms step:758/1480 train_time:114951ms step_avg:153.68ms step:759/1480 train_time:115119ms step_avg:153.70ms step:760/1480 train_time:115263ms step_avg:153.68ms step:761/1480 train_time:115419ms step_avg:153.69ms step:762/1480 train_time:115577ms step_avg:153.69ms step:763/1480 train_time:115734ms step_avg:153.70ms step:764/1480 train_time:115892ms step_avg:153.70ms step:765/1480 train_time:116049ms step_avg:153.71ms step:766/1480 train_time:116207ms step_avg:153.71ms step:767/1480 train_time:116364ms step_avg:153.72ms step:768/1480 train_time:116520ms step_avg:153.72ms step:769/1480 train_time:116676ms step_avg:153.72ms step:770/1480 train_time:116832ms step_avg:153.73ms step:771/1480 train_time:116990ms step_avg:153.73ms step:772/1480 train_time:117148ms step_avg:153.74ms step:773/1480 train_time:117306ms step_avg:153.74ms step:774/1480 train_time:117463ms step_avg:153.75ms step:775/1480 train_time:117620ms step_avg:153.75ms step:776/1480 train_time:117778ms step_avg:153.76ms step:777/1480 train_time:117938ms step_avg:153.77ms step:778/1480 train_time:118097ms step_avg:153.77ms step:779/1480 train_time:118255ms step_avg:153.78ms step:780/1480 train_time:118415ms step_avg:153.79ms step:781/1480 train_time:118572ms step_avg:153.79ms step:782/1480 train_time:118730ms step_avg:153.80ms step:783/1480 train_time:118886ms step_avg:153.80ms step:784/1480 train_time:119045ms step_avg:153.80ms step:785/1480 train_time:119202ms step_avg:153.81ms step:786/1480 train_time:119359ms step_avg:153.81ms step:787/1480 train_time:119517ms step_avg:153.82ms step:788/1480 train_time:119676ms step_avg:153.83ms step:789/1480 train_time:119833ms step_avg:153.83ms step:790/1480 train_time:119991ms step_avg:153.83ms step:791/1480 train_time:120151ms step_avg:153.84ms step:792/1480 train_time:120309ms step_avg:153.85ms step:793/1480 train_time:120466ms step_avg:153.85ms step:794/1480 train_time:120625ms step_avg:153.86ms step:795/1480 train_time:120784ms step_avg:153.86ms step:796/1480 train_time:120943ms step_avg:153.87ms step:797/1480 train_time:121101ms step_avg:153.88ms step:798/1480 train_time:121258ms step_avg:153.88ms step:799/1480 train_time:121420ms step_avg:153.89ms step:800/1480 train_time:121580ms step_avg:153.90ms step:801/1480 train_time:121736ms step_avg:153.90ms step:802/1480 train_time:121896ms step_avg:153.91ms step:803/1480 train_time:122055ms step_avg:153.92ms step:804/1480 train_time:122212ms step_avg:153.92ms step:805/1480 train_time:122373ms step_avg:153.93ms step:806/1480 train_time:122529ms step_avg:153.93ms step:807/1480 train_time:122686ms step_avg:153.94ms step:808/1480 train_time:122843ms step_avg:153.94ms step:809/1480 train_time:123001ms step_avg:153.94ms step:810/1480 train_time:123158ms step_avg:153.95ms step:811/1480 train_time:123315ms step_avg:153.95ms step:812/1480 train_time:123472ms step_avg:153.96ms step:813/1480 train_time:123628ms step_avg:153.96ms step:814/1480 train_time:123785ms step_avg:153.96ms step:815/1480 train_time:123942ms step_avg:153.97ms step:816/1480 train_time:124101ms step_avg:153.97ms step:817/1480 train_time:124258ms step_avg:153.97ms step:818/1480 train_time:124415ms step_avg:153.98ms step:819/1480 train_time:124574ms step_avg:153.98ms step:820/1480 train_time:124732ms step_avg:153.99ms step:821/1480 train_time:124889ms step_avg:153.99ms step:822/1480 train_time:125047ms step_avg:154.00ms step:823/1480 train_time:125205ms step_avg:154.00ms step:824/1480 train_time:125360ms step_avg:154.01ms step:825/1480 train_time:125521ms step_avg:154.01ms step:826/1480 train_time:125680ms step_avg:154.02ms step:827/1480 train_time:125838ms step_avg:154.02ms step:828/1480 train_time:125996ms step_avg:154.03ms step:829/1480 train_time:126154ms step_avg:154.03ms step:830/1480 train_time:126313ms step_avg:154.04ms step:831/1480 train_time:126472ms step_avg:154.05ms step:832/1480 train_time:126629ms step_avg:154.05ms step:833/1480 train_time:126787ms step_avg:154.05ms step:834/1480 train_time:126948ms step_avg:154.06ms step:835/1480 train_time:127105ms step_avg:154.07ms step:836/1480 train_time:127264ms step_avg:154.07ms step:837/1480 train_time:127423ms step_avg:154.08ms step:838/1480 train_time:127579ms step_avg:154.08ms step:839/1480 train_time:127738ms step_avg:154.09ms step:840/1480 train_time:127896ms step_avg:154.09ms step:841/1480 train_time:128054ms step_avg:154.10ms step:842/1480 train_time:128212ms step_avg:154.10ms step:843/1480 train_time:128369ms step_avg:154.10ms step:844/1480 train_time:128526ms step_avg:154.11ms step:845/1480 train_time:128684ms step_avg:154.11ms step:846/1480 train_time:128843ms step_avg:154.12ms step:847/1480 train_time:129001ms step_avg:154.12ms step:848/1480 train_time:129159ms step_avg:154.13ms step:849/1480 train_time:129319ms step_avg:154.13ms step:850/1480 train_time:129477ms step_avg:154.14ms step:851/1480 train_time:129637ms step_avg:154.15ms step:852/1480 train_time:129795ms step_avg:154.15ms step:853/1480 train_time:129953ms step_avg:154.16ms step:854/1480 train_time:130110ms step_avg:154.16ms step:855/1480 train_time:130268ms step_avg:154.16ms step:856/1480 train_time:130426ms step_avg:154.17ms step:857/1480 train_time:130585ms step_avg:154.17ms step:858/1480 train_time:130744ms step_avg:154.18ms step:859/1480 train_time:130902ms step_avg:154.18ms step:860/1480 train_time:131059ms step_avg:154.19ms step:861/1480 train_time:131218ms step_avg:154.19ms step:862/1480 train_time:131382ms step_avg:154.20ms step:863/1480 train_time:131540ms step_avg:154.21ms step:864/1480 train_time:131698ms step_avg:154.21ms step:865/1480 train_time:131856ms step_avg:154.22ms step:866/1480 train_time:132014ms step_avg:154.22ms step:867/1480 train_time:132174ms step_avg:154.23ms step:868/1480 train_time:132332ms step_avg:154.23ms step:869/1480 train_time:132489ms step_avg:154.24ms step:870/1480 train_time:132649ms step_avg:154.24ms step:871/1480 train_time:132805ms step_avg:154.25ms step:872/1480 train_time:132962ms step_avg:154.25ms step:873/1480 train_time:133119ms step_avg:154.25ms step:874/1480 train_time:133277ms step_avg:154.26ms step:875/1480 train_time:133436ms step_avg:154.26ms step:875/1480 val_loss:3.5045 train_time:133509ms step_avg:154.35ms step:876/1480 train_time:133603ms step_avg:154.28ms step:877/1480 train_time:133755ms step_avg:154.27ms step:878/1480 train_time:133914ms step_avg:154.28ms step:879/1480 train_time:134072ms step_avg:154.28ms step:880/1480 train_time:134229ms step_avg:154.29ms step:881/1480 train_time:134387ms step_avg:154.29ms step:882/1480 train_time:134548ms step_avg:154.30ms step:883/1480 train_time:134708ms step_avg:154.30ms step:884/1480 train_time:134869ms step_avg:154.31ms step:885/1480 train_time:135029ms step_avg:154.32ms step:886/1480 train_time:135190ms step_avg:154.33ms step:887/1480 train_time:135349ms step_avg:154.33ms step:888/1480 train_time:135513ms step_avg:154.34ms step:889/1480 train_time:135675ms step_avg:154.35ms step:890/1480 train_time:135831ms step_avg:154.35ms step:891/1480 train_time:135990ms step_avg:154.36ms step:892/1480 train_time:136151ms step_avg:154.37ms step:893/1480 train_time:136309ms step_avg:154.37ms step:894/1480 train_time:136470ms step_avg:154.38ms step:895/1480 train_time:136631ms step_avg:154.38ms step:896/1480 train_time:136788ms step_avg:154.39ms step:897/1480 train_time:136949ms step_avg:154.40ms step:898/1480 train_time:137110ms step_avg:154.40ms step:899/1480 train_time:137269ms step_avg:154.41ms step:900/1480 train_time:137428ms step_avg:154.41ms step:901/1480 train_time:137588ms step_avg:154.42ms step:902/1480 train_time:137746ms step_avg:154.42ms step:903/1480 train_time:137907ms step_avg:154.43ms step:904/1480 train_time:138067ms step_avg:154.44ms step:905/1480 train_time:138228ms step_avg:154.44ms step:906/1480 train_time:138388ms step_avg:154.45ms step:907/1480 train_time:138550ms step_avg:154.46ms step:908/1480 train_time:138707ms step_avg:154.46ms step:909/1480 train_time:138867ms step_avg:154.47ms step:910/1480 train_time:139031ms step_avg:154.48ms step:911/1480 train_time:139189ms step_avg:154.48ms step:912/1480 train_time:139348ms step_avg:154.49ms step:913/1480 train_time:139509ms step_avg:154.50ms step:914/1480 train_time:139670ms step_avg:154.50ms step:915/1480 train_time:139831ms step_avg:154.51ms step:916/1480 train_time:139992ms step_avg:154.52ms step:917/1480 train_time:140149ms step_avg:154.52ms step:918/1480 train_time:140309ms step_avg:154.53ms step:919/1480 train_time:140472ms step_avg:154.53ms step:920/1480 train_time:140631ms step_avg:154.54ms step:921/1480 train_time:140790ms step_avg:154.54ms step:922/1480 train_time:140951ms step_avg:154.55ms step:923/1480 train_time:141108ms step_avg:154.55ms step:924/1480 train_time:141267ms step_avg:154.56ms step:925/1480 train_time:141428ms step_avg:154.57ms step:926/1480 train_time:141588ms step_avg:154.57ms step:927/1480 train_time:141746ms step_avg:154.58ms step:928/1480 train_time:141905ms step_avg:154.58ms step:929/1480 train_time:142066ms step_avg:154.59ms step:930/1480 train_time:142227ms step_avg:154.59ms step:931/1480 train_time:142385ms step_avg:154.60ms step:932/1480 train_time:142545ms step_avg:154.60ms step:933/1480 train_time:142705ms step_avg:154.61ms step:934/1480 train_time:142865ms step_avg:154.62ms step:935/1480 train_time:143026ms step_avg:154.62ms step:936/1480 train_time:143185ms step_avg:154.63ms step:937/1480 train_time:143347ms step_avg:154.64ms step:938/1480 train_time:143505ms step_avg:154.64ms step:939/1480 train_time:143667ms step_avg:154.65ms step:940/1480 train_time:143829ms step_avg:154.65ms step:941/1480 train_time:143988ms step_avg:154.66ms step:942/1480 train_time:144147ms step_avg:154.66ms step:943/1480 train_time:144308ms step_avg:154.67ms step:944/1480 train_time:144472ms step_avg:154.68ms step:945/1480 train_time:144630ms step_avg:154.68ms step:946/1480 train_time:144794ms step_avg:154.69ms step:947/1480 train_time:144954ms step_avg:154.70ms step:948/1480 train_time:145113ms step_avg:154.70ms step:949/1480 train_time:145282ms step_avg:154.72ms step:950/1480 train_time:145430ms step_avg:154.71ms step:951/1480 train_time:145591ms step_avg:154.72ms step:952/1480 train_time:145750ms step_avg:154.72ms step:953/1480 train_time:145910ms step_avg:154.73ms step:954/1480 train_time:146074ms step_avg:154.74ms step:955/1480 train_time:146231ms step_avg:154.74ms step:956/1480 train_time:146391ms step_avg:154.75ms step:957/1480 train_time:146553ms step_avg:154.75ms step:958/1480 train_time:146715ms step_avg:154.76ms step:959/1480 train_time:146874ms step_avg:154.77ms step:960/1480 train_time:147033ms step_avg:154.77ms step:961/1480 train_time:147191ms step_avg:154.78ms step:962/1480 train_time:147349ms step_avg:154.78ms step:963/1480 train_time:147509ms step_avg:154.78ms step:964/1480 train_time:147671ms step_avg:154.79ms step:965/1480 train_time:147831ms step_avg:154.80ms step:966/1480 train_time:147989ms step_avg:154.80ms step:967/1480 train_time:148147ms step_avg:154.80ms step:968/1480 train_time:148307ms step_avg:154.81ms step:969/1480 train_time:148467ms step_avg:154.81ms step:970/1480 train_time:148625ms step_avg:154.82ms step:971/1480 train_time:148785ms step_avg:154.82ms step:972/1480 train_time:148943ms step_avg:154.83ms step:973/1480 train_time:149101ms step_avg:154.83ms step:974/1480 train_time:149264ms step_avg:154.84ms step:975/1480 train_time:149425ms step_avg:154.84ms step:976/1480 train_time:149585ms step_avg:154.85ms step:977/1480 train_time:149744ms step_avg:154.85ms step:978/1480 train_time:149903ms step_avg:154.86ms step:979/1480 train_time:150063ms step_avg:154.86ms step:980/1480 train_time:150224ms step_avg:154.87ms step:981/1480 train_time:150387ms step_avg:154.88ms step:982/1480 train_time:150546ms step_avg:154.88ms step:983/1480 train_time:150707ms step_avg:154.89ms step:984/1480 train_time:150867ms step_avg:154.89ms step:985/1480 train_time:151028ms step_avg:154.90ms step:986/1480 train_time:151188ms step_avg:154.91ms step:987/1480 train_time:151349ms step_avg:154.91ms step:988/1480 train_time:151507ms step_avg:154.92ms step:989/1480 train_time:151666ms step_avg:154.92ms step:990/1480 train_time:151830ms step_avg:154.93ms step:991/1480 train_time:151991ms step_avg:154.94ms step:992/1480 train_time:152155ms step_avg:154.94ms step:993/1480 train_time:152323ms step_avg:154.96ms step:994/1480 train_time:152482ms step_avg:154.96ms step:995/1480 train_time:152641ms step_avg:154.97ms step:996/1480 train_time:152798ms step_avg:154.97ms step:997/1480 train_time:152957ms step_avg:154.97ms step:998/1480 train_time:153116ms step_avg:154.98ms step:999/1480 train_time:153276ms step_avg:154.98ms step:1000/1480 train_time:153436ms step_avg:154.99ms step:1000/1480 val_loss:3.4405 train_time:153509ms step_avg:155.06ms step:1001/1480 train_time:153606ms step_avg:155.00ms step:1002/1480 train_time:153760ms step_avg:155.00ms step:1003/1480 train_time:153923ms step_avg:155.01ms step:1004/1480 train_time:154084ms step_avg:155.01ms step:1005/1480 train_time:154244ms step_avg:155.02ms step:1006/1480 train_time:154404ms step_avg:155.02ms step:1007/1480 train_time:154564ms step_avg:155.03ms step:1008/1480 train_time:154724ms step_avg:155.03ms step:1009/1480 train_time:154887ms step_avg:155.04ms step:1010/1480 train_time:155047ms step_avg:155.05ms step:1011/1480 train_time:155206ms step_avg:155.05ms step:1012/1480 train_time:155363ms step_avg:155.05ms step:1013/1480 train_time:155524ms step_avg:155.06ms step:1014/1480 train_time:155684ms step_avg:155.06ms step:1015/1480 train_time:155848ms step_avg:155.07ms step:1016/1480 train_time:156008ms step_avg:155.08ms step:1017/1480 train_time:156169ms step_avg:155.08ms step:1018/1480 train_time:156329ms step_avg:155.09ms step:1019/1480 train_time:156491ms step_avg:155.09ms step:1020/1480 train_time:156651ms step_avg:155.10ms step:1021/1480 train_time:156810ms step_avg:155.10ms step:1022/1480 train_time:156968ms step_avg:155.11ms step:1023/1480 train_time:157130ms step_avg:155.11ms step:1024/1480 train_time:157288ms step_avg:155.12ms step:1025/1480 train_time:157450ms step_avg:155.12ms step:1026/1480 train_time:157609ms step_avg:155.13ms step:1027/1480 train_time:157767ms step_avg:155.13ms step:1028/1480 train_time:157930ms step_avg:155.14ms step:1029/1480 train_time:158096ms step_avg:155.15ms step:1030/1480 train_time:158258ms step_avg:155.15ms step:1031/1480 train_time:158417ms step_avg:155.16ms step:1032/1480 train_time:158581ms step_avg:155.17ms step:1033/1480 train_time:158741ms step_avg:155.17ms step:1034/1480 train_time:158901ms step_avg:155.18ms step:1035/1480 train_time:159062ms step_avg:155.18ms step:1036/1480 train_time:159222ms step_avg:155.19ms step:1037/1480 train_time:159381ms step_avg:155.19ms step:1038/1480 train_time:159543ms step_avg:155.20ms step:1039/1480 train_time:159704ms step_avg:155.20ms step:1040/1480 train_time:159865ms step_avg:155.21ms step:1041/1480 train_time:160024ms step_avg:155.21ms step:1042/1480 train_time:160182ms step_avg:155.22ms step:1043/1480 train_time:160343ms step_avg:155.22ms step:1044/1480 train_time:160503ms step_avg:155.23ms step:1045/1480 train_time:160664ms step_avg:155.23ms step:1046/1480 train_time:160824ms step_avg:155.24ms step:1047/1480 train_time:160983ms step_avg:155.24ms step:1048/1480 train_time:161143ms step_avg:155.24ms step:1049/1480 train_time:161302ms step_avg:155.25ms step:1050/1480 train_time:161464ms step_avg:155.25ms step:1051/1480 train_time:161625ms step_avg:155.26ms step:1052/1480 train_time:161785ms step_avg:155.26ms step:1053/1480 train_time:161947ms step_avg:155.27ms step:1054/1480 train_time:162107ms step_avg:155.28ms step:1055/1480 train_time:162267ms step_avg:155.28ms step:1056/1480 train_time:162427ms step_avg:155.28ms step:1057/1480 train_time:162586ms step_avg:155.29ms step:1058/1480 train_time:162747ms step_avg:155.29ms step:1059/1480 train_time:162909ms step_avg:155.30ms step:1060/1480 train_time:163070ms step_avg:155.30ms step:1061/1480 train_time:163228ms step_avg:155.31ms step:1062/1480 train_time:163386ms step_avg:155.31ms step:1063/1480 train_time:163545ms step_avg:155.31ms step:1064/1480 train_time:163703ms step_avg:155.32ms step:1065/1480 train_time:163863ms step_avg:155.32ms step:1066/1480 train_time:164025ms step_avg:155.33ms step:1067/1480 train_time:164185ms step_avg:155.33ms step:1068/1480 train_time:164345ms step_avg:155.34ms step:1069/1480 train_time:164508ms step_avg:155.34ms step:1070/1480 train_time:164666ms step_avg:155.35ms step:1071/1480 train_time:164831ms step_avg:155.35ms step:1072/1480 train_time:164989ms step_avg:155.36ms step:1073/1480 train_time:165147ms step_avg:155.36ms step:1074/1480 train_time:165305ms step_avg:155.36ms step:1075/1480 train_time:165465ms step_avg:155.37ms step:1076/1480 train_time:165625ms step_avg:155.37ms step:1077/1480 train_time:165783ms step_avg:155.37ms step:1078/1480 train_time:165948ms step_avg:155.38ms step:1079/1480 train_time:166111ms step_avg:155.39ms step:1080/1480 train_time:166271ms step_avg:155.39ms step:1081/1480 train_time:166432ms step_avg:155.40ms step:1082/1480 train_time:166591ms step_avg:155.40ms step:1083/1480 train_time:166751ms step_avg:155.41ms step:1084/1480 train_time:166910ms step_avg:155.41ms step:1085/1480 train_time:167071ms step_avg:155.42ms step:1086/1480 train_time:167233ms step_avg:155.42ms step:1087/1480 train_time:167395ms step_avg:155.43ms step:1088/1480 train_time:167557ms step_avg:155.43ms step:1089/1480 train_time:167721ms step_avg:155.44ms step:1090/1480 train_time:167883ms step_avg:155.45ms step:1091/1480 train_time:168043ms step_avg:155.45ms step:1092/1480 train_time:168206ms step_avg:155.46ms step:1093/1480 train_time:168367ms step_avg:155.46ms step:1094/1480 train_time:168527ms step_avg:155.47ms step:1095/1480 train_time:168686ms step_avg:155.47ms step:1096/1480 train_time:168847ms step_avg:155.48ms step:1097/1480 train_time:169008ms step_avg:155.48ms step:1098/1480 train_time:169170ms step_avg:155.49ms step:1099/1480 train_time:169332ms step_avg:155.49ms step:1100/1480 train_time:169497ms step_avg:155.50ms step:1101/1480 train_time:169660ms step_avg:155.51ms step:1102/1480 train_time:169823ms step_avg:155.52ms step:1103/1480 train_time:169987ms step_avg:155.52ms step:1104/1480 train_time:170148ms step_avg:155.53ms step:1105/1480 train_time:170310ms step_avg:155.53ms step:1106/1480 train_time:170472ms step_avg:155.54ms step:1107/1480 train_time:170633ms step_avg:155.55ms step:1108/1480 train_time:170794ms step_avg:155.55ms step:1109/1480 train_time:170953ms step_avg:155.55ms step:1110/1480 train_time:171116ms step_avg:155.56ms step:1111/1480 train_time:171281ms step_avg:155.57ms step:1112/1480 train_time:171443ms step_avg:155.57ms step:1113/1480 train_time:171612ms step_avg:155.59ms step:1114/1480 train_time:171774ms step_avg:155.59ms step:1115/1480 train_time:171938ms step_avg:155.60ms step:1116/1480 train_time:172099ms step_avg:155.61ms step:1117/1480 train_time:172263ms step_avg:155.61ms step:1118/1480 train_time:172427ms step_avg:155.62ms step:1119/1480 train_time:172587ms step_avg:155.62ms step:1120/1480 train_time:172748ms step_avg:155.63ms step:1121/1480 train_time:172910ms step_avg:155.63ms step:1122/1480 train_time:173071ms step_avg:155.64ms step:1123/1480 train_time:173232ms step_avg:155.64ms step:1124/1480 train_time:173394ms step_avg:155.65ms step:1125/1480 train_time:173557ms step_avg:155.66ms step:1125/1480 val_loss:3.3860 train_time:173632ms step_avg:155.72ms step:1126/1480 train_time:173727ms step_avg:155.67ms step:1127/1480 train_time:173884ms step_avg:155.67ms step:1128/1480 train_time:174045ms step_avg:155.68ms step:1129/1480 train_time:174210ms step_avg:155.68ms step:1130/1480 train_time:174371ms step_avg:155.69ms step:1131/1480 train_time:174536ms step_avg:155.70ms step:1132/1480 train_time:174695ms step_avg:155.70ms step:1133/1480 train_time:174858ms step_avg:155.71ms step:1134/1480 train_time:175020ms step_avg:155.71ms step:1135/1480 train_time:175183ms step_avg:155.72ms step:1136/1480 train_time:175347ms step_avg:155.73ms step:1137/1480 train_time:175507ms step_avg:155.73ms step:1138/1480 train_time:175672ms step_avg:155.74ms step:1139/1480 train_time:175843ms step_avg:155.75ms step:1140/1480 train_time:175993ms step_avg:155.75ms step:1141/1480 train_time:176160ms step_avg:155.76ms step:1142/1480 train_time:176320ms step_avg:155.76ms step:1143/1480 train_time:176485ms step_avg:155.77ms step:1144/1480 train_time:176648ms step_avg:155.77ms step:1145/1480 train_time:176808ms step_avg:155.78ms step:1146/1480 train_time:176971ms step_avg:155.78ms step:1147/1480 train_time:177131ms step_avg:155.79ms step:1148/1480 train_time:177293ms step_avg:155.79ms step:1149/1480 train_time:177455ms step_avg:155.80ms step:1150/1480 train_time:177614ms step_avg:155.80ms step:1151/1480 train_time:177779ms step_avg:155.81ms step:1152/1480 train_time:177942ms step_avg:155.82ms step:1153/1480 train_time:178108ms step_avg:155.83ms step:1154/1480 train_time:178270ms step_avg:155.83ms step:1155/1480 train_time:178430ms step_avg:155.83ms step:1156/1480 train_time:178596ms step_avg:155.84ms step:1157/1480 train_time:178759ms step_avg:155.85ms step:1158/1480 train_time:178919ms step_avg:155.85ms step:1159/1480 train_time:179079ms step_avg:155.86ms step:1160/1480 train_time:179239ms step_avg:155.86ms step:1161/1480 train_time:179400ms step_avg:155.86ms step:1162/1480 train_time:179562ms step_avg:155.87ms step:1163/1480 train_time:179727ms step_avg:155.88ms step:1164/1480 train_time:179891ms step_avg:155.88ms step:1165/1480 train_time:180050ms step_avg:155.89ms step:1166/1480 train_time:180211ms step_avg:155.89ms step:1167/1480 train_time:180370ms step_avg:155.89ms step:1168/1480 train_time:180531ms step_avg:155.90ms step:1169/1480 train_time:180693ms step_avg:155.90ms step:1170/1480 train_time:180853ms step_avg:155.91ms step:1171/1480 train_time:181014ms step_avg:155.91ms step:1172/1480 train_time:181173ms step_avg:155.91ms step:1173/1480 train_time:181334ms step_avg:155.92ms step:1174/1480 train_time:181505ms step_avg:155.93ms step:1175/1480 train_time:181670ms step_avg:155.94ms step:1176/1480 train_time:181832ms step_avg:155.94ms step:1177/1480 train_time:181997ms step_avg:155.95ms step:1178/1480 train_time:182157ms step_avg:155.96ms step:1179/1480 train_time:182317ms step_avg:155.96ms step:1180/1480 train_time:182488ms step_avg:155.97ms step:1181/1480 train_time:182652ms step_avg:155.98ms step:1182/1480 train_time:182811ms step_avg:155.98ms step:1183/1480 train_time:182973ms step_avg:155.99ms step:1184/1480 train_time:183133ms step_avg:155.99ms step:1185/1480 train_time:183296ms step_avg:156.00ms step:1186/1480 train_time:183458ms step_avg:156.00ms step:1187/1480 train_time:183631ms step_avg:156.02ms step:1188/1480 train_time:183790ms step_avg:156.02ms step:1189/1480 train_time:183952ms step_avg:156.02ms step:1190/1480 train_time:184113ms step_avg:156.03ms step:1191/1480 train_time:184278ms step_avg:156.04ms step:1192/1480 train_time:184438ms step_avg:156.04ms step:1193/1480 train_time:184598ms step_avg:156.04ms step:1194/1480 train_time:184759ms step_avg:156.05ms step:1195/1480 train_time:184921ms step_avg:156.05ms step:1196/1480 train_time:185091ms step_avg:156.06ms step:1197/1480 train_time:185252ms step_avg:156.07ms step:1198/1480 train_time:185418ms step_avg:156.08ms step:1199/1480 train_time:185580ms step_avg:156.08ms step:1200/1480 train_time:185742ms step_avg:156.09ms step:1201/1480 train_time:185903ms step_avg:156.09ms step:1202/1480 train_time:186072ms step_avg:156.10ms step:1203/1480 train_time:186238ms step_avg:156.11ms step:1204/1480 train_time:186399ms step_avg:156.11ms step:1205/1480 train_time:186561ms step_avg:156.12ms step:1206/1480 train_time:186722ms step_avg:156.12ms step:1207/1480 train_time:186884ms step_avg:156.13ms step:1208/1480 train_time:187046ms step_avg:156.13ms step:1209/1480 train_time:187210ms step_avg:156.14ms step:1210/1480 train_time:187374ms step_avg:156.14ms step:1211/1480 train_time:187537ms step_avg:156.15ms step:1212/1480 train_time:187699ms step_avg:156.16ms step:1213/1480 train_time:187863ms step_avg:156.16ms step:1214/1480 train_time:188030ms step_avg:156.17ms step:1215/1480 train_time:188193ms step_avg:156.18ms step:1216/1480 train_time:188354ms step_avg:156.18ms step:1217/1480 train_time:188518ms step_avg:156.19ms step:1218/1480 train_time:188681ms step_avg:156.19ms step:1219/1480 train_time:188850ms step_avg:156.20ms step:1220/1480 train_time:189012ms step_avg:156.21ms step:1221/1480 train_time:189176ms step_avg:156.21ms step:1222/1480 train_time:189335ms step_avg:156.22ms step:1223/1480 train_time:189498ms step_avg:156.22ms step:1224/1480 train_time:189664ms step_avg:156.23ms step:1225/1480 train_time:189829ms step_avg:156.24ms step:1226/1480 train_time:189993ms step_avg:156.24ms step:1227/1480 train_time:190157ms step_avg:156.25ms step:1228/1480 train_time:190318ms step_avg:156.25ms step:1229/1480 train_time:190482ms step_avg:156.26ms step:1230/1480 train_time:190651ms step_avg:156.27ms step:1231/1480 train_time:190816ms step_avg:156.28ms step:1232/1480 train_time:190982ms step_avg:156.29ms step:1233/1480 train_time:191143ms step_avg:156.29ms step:1234/1480 train_time:191306ms step_avg:156.30ms step:1235/1480 train_time:191473ms step_avg:156.30ms step:1236/1480 train_time:191633ms step_avg:156.31ms step:1237/1480 train_time:191794ms step_avg:156.31ms step:1238/1480 train_time:191965ms step_avg:156.32ms step:1239/1480 train_time:192128ms step_avg:156.33ms step:1240/1480 train_time:192292ms step_avg:156.34ms step:1241/1480 train_time:192456ms step_avg:156.34ms step:1242/1480 train_time:192617ms step_avg:156.35ms step:1243/1480 train_time:192780ms step_avg:156.35ms step:1244/1480 train_time:192941ms step_avg:156.35ms step:1245/1480 train_time:193106ms step_avg:156.36ms step:1246/1480 train_time:193270ms step_avg:156.37ms step:1247/1480 train_time:193431ms step_avg:156.37ms step:1248/1480 train_time:193593ms step_avg:156.38ms step:1249/1480 train_time:193754ms step_avg:156.38ms step:1250/1480 train_time:193914ms step_avg:156.38ms step:1250/1480 val_loss:3.3360 train_time:193989ms step_avg:156.44ms step:1251/1480 train_time:194082ms step_avg:156.39ms step:1252/1480 train_time:194245ms step_avg:156.40ms step:1253/1480 train_time:194407ms step_avg:156.40ms step:1254/1480 train_time:194569ms step_avg:156.41ms step:1255/1480 train_time:194741ms step_avg:156.42ms step:1256/1480 train_time:194906ms step_avg:156.43ms step:1257/1480 train_time:195068ms step_avg:156.43ms step:1258/1480 train_time:195234ms step_avg:156.44ms step:1259/1480 train_time:195398ms step_avg:156.44ms step:1260/1480 train_time:195557ms step_avg:156.45ms step:1261/1480 train_time:195719ms step_avg:156.45ms step:1262/1480 train_time:195884ms step_avg:156.46ms step:1263/1480 train_time:196050ms step_avg:156.46ms step:1264/1480 train_time:196210ms step_avg:156.47ms step:1265/1480 train_time:196371ms step_avg:156.47ms step:1266/1480 train_time:196536ms step_avg:156.48ms step:1267/1480 train_time:196696ms step_avg:156.48ms step:1268/1480 train_time:196858ms step_avg:156.49ms step:1269/1480 train_time:197023ms step_avg:156.49ms step:1270/1480 train_time:197186ms step_avg:156.50ms step:1271/1480 train_time:197351ms step_avg:156.50ms step:1272/1480 train_time:197512ms step_avg:156.51ms step:1273/1480 train_time:197673ms step_avg:156.51ms step:1274/1480 train_time:197839ms step_avg:156.52ms step:1275/1480 train_time:198000ms step_avg:156.52ms step:1276/1480 train_time:198158ms step_avg:156.52ms step:1277/1480 train_time:198321ms step_avg:156.53ms step:1278/1480 train_time:198480ms step_avg:156.53ms step:1279/1480 train_time:198642ms step_avg:156.53ms step:1280/1480 train_time:198811ms step_avg:156.54ms step:1281/1480 train_time:198972ms step_avg:156.55ms step:1282/1480 train_time:199133ms step_avg:156.55ms step:1283/1480 train_time:199296ms step_avg:156.56ms step:1284/1480 train_time:199458ms step_avg:156.56ms step:1285/1480 train_time:199620ms step_avg:156.56ms step:1286/1480 train_time:199781ms step_avg:156.57ms step:1287/1480 train_time:199944ms step_avg:156.57ms step:1288/1480 train_time:200108ms step_avg:156.58ms step:1289/1480 train_time:200277ms step_avg:156.59ms step:1290/1480 train_time:200444ms step_avg:156.60ms step:1291/1480 train_time:200610ms step_avg:156.60ms step:1292/1480 train_time:200774ms step_avg:156.61ms step:1293/1480 train_time:200940ms step_avg:156.62ms step:1294/1480 train_time:201103ms step_avg:156.62ms step:1295/1480 train_time:201266ms step_avg:156.63ms step:1296/1480 train_time:201431ms step_avg:156.63ms step:1297/1480 train_time:201594ms step_avg:156.64ms step:1298/1480 train_time:201756ms step_avg:156.64ms step:1299/1480 train_time:201918ms step_avg:156.65ms step:1300/1480 train_time:202078ms step_avg:156.65ms step:1301/1480 train_time:202239ms step_avg:156.65ms step:1302/1480 train_time:202404ms step_avg:156.66ms step:1303/1480 train_time:202574ms step_avg:156.67ms step:1304/1480 train_time:202740ms step_avg:156.68ms step:1305/1480 train_time:202900ms step_avg:156.68ms step:1306/1480 train_time:203064ms step_avg:156.69ms step:1307/1480 train_time:203227ms step_avg:156.69ms step:1308/1480 train_time:203391ms step_avg:156.70ms step:1309/1480 train_time:203557ms step_avg:156.70ms step:1310/1480 train_time:203721ms step_avg:156.71ms step:1311/1480 train_time:203881ms step_avg:156.71ms step:1312/1480 train_time:204047ms step_avg:156.72ms step:1313/1480 train_time:204209ms step_avg:156.72ms step:1314/1480 train_time:204374ms step_avg:156.73ms step:1315/1480 train_time:204538ms step_avg:156.73ms step:1316/1480 train_time:204698ms step_avg:156.74ms step:1317/1480 train_time:204858ms step_avg:156.74ms step:1318/1480 train_time:205025ms step_avg:156.75ms step:1319/1480 train_time:205192ms step_avg:156.75ms step:1320/1480 train_time:205359ms step_avg:156.76ms step:1321/1480 train_time:205522ms step_avg:156.77ms step:1322/1480 train_time:205693ms step_avg:156.78ms step:1323/1480 train_time:205857ms step_avg:156.78ms step:1324/1480 train_time:206020ms step_avg:156.79ms step:1325/1480 train_time:206187ms step_avg:156.80ms step:1326/1480 train_time:206355ms step_avg:156.80ms step:1327/1480 train_time:206517ms step_avg:156.81ms step:1328/1480 train_time:206679ms step_avg:156.81ms step:1329/1480 train_time:206866ms step_avg:156.84ms step:1330/1480 train_time:207028ms step_avg:156.84ms step:1331/1480 train_time:207192ms step_avg:156.85ms step:1332/1480 train_time:207356ms step_avg:156.85ms step:1333/1480 train_time:207520ms step_avg:156.86ms step:1334/1480 train_time:207683ms step_avg:156.86ms step:1335/1480 train_time:207843ms step_avg:156.86ms step:1336/1480 train_time:208014ms step_avg:156.87ms step:1337/1480 train_time:208180ms step_avg:156.88ms step:1338/1480 train_time:208343ms step_avg:156.88ms step:1339/1480 train_time:208507ms step_avg:156.89ms step:1340/1480 train_time:208670ms step_avg:156.89ms step:1341/1480 train_time:208833ms step_avg:156.90ms step:1342/1480 train_time:209000ms step_avg:156.91ms step:1343/1480 train_time:209161ms step_avg:156.91ms step:1344/1480 train_time:209323ms step_avg:156.91ms step:1345/1480 train_time:209492ms step_avg:156.92ms step:1346/1480 train_time:209654ms step_avg:156.93ms step:1347/1480 train_time:209817ms step_avg:156.93ms step:1348/1480 train_time:209978ms step_avg:156.93ms step:1349/1480 train_time:210140ms step_avg:156.94ms step:1350/1480 train_time:210306ms step_avg:156.94ms step:1351/1480 train_time:210468ms step_avg:156.95ms step:1352/1480 train_time:210632ms step_avg:156.95ms step:1353/1480 train_time:210798ms step_avg:156.96ms step:1354/1480 train_time:210960ms step_avg:156.96ms step:1355/1480 train_time:211122ms step_avg:156.97ms step:1356/1480 train_time:211286ms step_avg:156.97ms step:1357/1480 train_time:211452ms step_avg:156.98ms step:1358/1480 train_time:211615ms step_avg:156.98ms step:1359/1480 train_time:211779ms step_avg:156.99ms step:1360/1480 train_time:211944ms step_avg:157.00ms step:1361/1480 train_time:212112ms step_avg:157.00ms step:1362/1480 train_time:212278ms step_avg:157.01ms step:1363/1480 train_time:212445ms step_avg:157.02ms step:1364/1480 train_time:212611ms step_avg:157.02ms step:1365/1480 train_time:212772ms step_avg:157.03ms step:1366/1480 train_time:212936ms step_avg:157.03ms step:1367/1480 train_time:213099ms step_avg:157.04ms step:1368/1480 train_time:213263ms step_avg:157.04ms step:1369/1480 train_time:213434ms step_avg:157.05ms step:1370/1480 train_time:213600ms step_avg:157.06ms step:1371/1480 train_time:213762ms step_avg:157.06ms step:1372/1480 train_time:213932ms step_avg:157.07ms step:1373/1480 train_time:214093ms step_avg:157.08ms step:1374/1480 train_time:214260ms step_avg:157.08ms step:1375/1480 train_time:214422ms step_avg:157.09ms step:1375/1480 val_loss:3.2970 train_time:214496ms step_avg:157.14ms step:1376/1480 train_time:214593ms step_avg:157.10ms step:1377/1480 train_time:214753ms step_avg:157.10ms step:1378/1480 train_time:214913ms step_avg:157.10ms step:1379/1480 train_time:215077ms step_avg:157.11ms step:1380/1480 train_time:215241ms step_avg:157.11ms step:1381/1480 train_time:215409ms step_avg:157.12ms step:1382/1480 train_time:215573ms step_avg:157.12ms step:1383/1480 train_time:215734ms step_avg:157.13ms step:1384/1480 train_time:215900ms step_avg:157.13ms step:1385/1480 train_time:216060ms step_avg:157.13ms step:1386/1480 train_time:216225ms step_avg:157.14ms step:1387/1480 train_time:216391ms step_avg:157.15ms step:1388/1480 train_time:216553ms step_avg:157.15ms step:1389/1480 train_time:216717ms step_avg:157.16ms step:1390/1480 train_time:216877ms step_avg:157.16ms step:1391/1480 train_time:217039ms step_avg:157.16ms step:1392/1480 train_time:217205ms step_avg:157.17ms step:1393/1480 train_time:217369ms step_avg:157.17ms step:1394/1480 train_time:217532ms step_avg:157.18ms step:1395/1480 train_time:217694ms step_avg:157.18ms step:1396/1480 train_time:217856ms step_avg:157.18ms step:1397/1480 train_time:218016ms step_avg:157.19ms step:1398/1480 train_time:218176ms step_avg:157.19ms step:1399/1480 train_time:218339ms step_avg:157.19ms step:1400/1480 train_time:218508ms step_avg:157.20ms step:1401/1480 train_time:218668ms step_avg:157.20ms step:1402/1480 train_time:218830ms step_avg:157.21ms step:1403/1480 train_time:218995ms step_avg:157.21ms step:1404/1480 train_time:219158ms step_avg:157.21ms step:1405/1480 train_time:219321ms step_avg:157.22ms step:1406/1480 train_time:219487ms step_avg:157.23ms step:1407/1480 train_time:219649ms step_avg:157.23ms step:1408/1480 train_time:219810ms step_avg:157.23ms step:1409/1480 train_time:219981ms step_avg:157.24ms step:1410/1480 train_time:220147ms step_avg:157.25ms step:1411/1480 train_time:220308ms step_avg:157.25ms step:1412/1480 train_time:220470ms step_avg:157.25ms step:1413/1480 train_time:220633ms step_avg:157.26ms step:1414/1480 train_time:220796ms step_avg:157.26ms step:1415/1480 train_time:220961ms step_avg:157.27ms step:1416/1480 train_time:221136ms step_avg:157.28ms step:1417/1480 train_time:221301ms step_avg:157.29ms step:1418/1480 train_time:221467ms step_avg:157.29ms step:1419/1480 train_time:221632ms step_avg:157.30ms step:1420/1480 train_time:221796ms step_avg:157.30ms step:1421/1480 train_time:221958ms step_avg:157.31ms step:1422/1480 train_time:222121ms step_avg:157.31ms step:1423/1480 train_time:222282ms step_avg:157.31ms step:1424/1480 train_time:222452ms step_avg:157.32ms step:1425/1480 train_time:222621ms step_avg:157.33ms step:1426/1480 train_time:222786ms step_avg:157.33ms step:1427/1480 train_time:222952ms step_avg:157.34ms step:1428/1480 train_time:223114ms step_avg:157.34ms step:1429/1480 train_time:223274ms step_avg:157.35ms step:1430/1480 train_time:223438ms step_avg:157.35ms step:1431/1480 train_time:223603ms step_avg:157.36ms step:1432/1480 train_time:223771ms step_avg:157.36ms step:1433/1480 train_time:223939ms step_avg:157.37ms step:1434/1480 train_time:224109ms step_avg:157.38ms step:1435/1480 train_time:224274ms step_avg:157.39ms step:1436/1480 train_time:224438ms step_avg:157.39ms step:1437/1480 train_time:224599ms step_avg:157.39ms step:1438/1480 train_time:224761ms step_avg:157.40ms step:1439/1480 train_time:224927ms step_avg:157.40ms step:1440/1480 train_time:225091ms step_avg:157.41ms step:1441/1480 train_time:225255ms step_avg:157.41ms step:1442/1480 train_time:225418ms step_avg:157.42ms step:1443/1480 train_time:225593ms step_avg:157.43ms step:1444/1480 train_time:225756ms step_avg:157.43ms step:1445/1480 train_time:225917ms step_avg:157.43ms step:1446/1480 train_time:226084ms step_avg:157.44ms step:1447/1480 train_time:226252ms step_avg:157.45ms step:1448/1480 train_time:226414ms step_avg:157.45ms step:1449/1480 train_time:226577ms step_avg:157.45ms step:1450/1480 train_time:226740ms step_avg:157.46ms step:1451/1480 train_time:226905ms step_avg:157.46ms step:1452/1480 train_time:227071ms step_avg:157.47ms step:1453/1480 train_time:227234ms step_avg:157.47ms step:1454/1480 train_time:227395ms step_avg:157.48ms step:1455/1480 train_time:227565ms step_avg:157.48ms step:1456/1480 train_time:227729ms step_avg:157.49ms step:1457/1480 train_time:227891ms step_avg:157.49ms step:1458/1480 train_time:228054ms step_avg:157.50ms step:1459/1480 train_time:228218ms step_avg:157.50ms step:1460/1480 train_time:228382ms step_avg:157.50ms step:1461/1480 train_time:228547ms step_avg:157.51ms step:1462/1480 train_time:228711ms step_avg:157.51ms step:1463/1480 train_time:228876ms step_avg:157.52ms step:1464/1480 train_time:229040ms step_avg:157.52ms step:1465/1480 train_time:229205ms step_avg:157.53ms step:1466/1480 train_time:229369ms step_avg:157.53ms step:1467/1480 train_time:229534ms step_avg:157.54ms step:1468/1480 train_time:229695ms step_avg:157.54ms step:1469/1480 train_time:229858ms step_avg:157.55ms step:1470/1480 train_time:230028ms step_avg:157.55ms step:1471/1480 train_time:230198ms step_avg:157.56ms step:1472/1480 train_time:230370ms step_avg:157.57ms step:1473/1480 train_time:230533ms step_avg:157.58ms step:1474/1480 train_time:230699ms step_avg:157.58ms step:1475/1480 train_time:230868ms step_avg:157.59ms step:1476/1480 train_time:231032ms step_avg:157.59ms step:1477/1480 train_time:231200ms step_avg:157.60ms step:1478/1480 train_time:231372ms step_avg:157.61ms step:1479/1480 train_time:231537ms step_avg:157.62ms step:1480/1480 train_time:231699ms step_avg:157.62ms step:1480/1480 val_loss:3.2781 train_time:231777ms step_avg:157.67ms peak memory consumption: 34239 MiB